全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

邻苯二甲酸二丁酯暴露下大型溞miR-34和Bcl-2基因的表达和功能分析
Expression and Function Analysis of miR-34 and Bcl-2 Gene in Daphnia magna Exposed to Dibutyl Phthalate

DOI: 10.12677/AMS.2022.92013, PP. 118-127

Keywords: 大型溞,miR-34,Bcl-2,邻苯二甲酸二丁酯,基因富集分析
Daphnia magna
, miR-34, Bcl-2, Dibutyl Phthalate, Gene Enrichment Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文旨在探究miR-34靶基因的功能及邻苯二甲酸二丁酯(Dinbutyl phthalate, DBP)暴露下大型溞miR-34与其靶基因Bcl-2的表达调控关系。首先利用miRbase数据库、Clustal W和MEGA7.0软件分析各物种miR-34序列的保守性;其次通过Targetscan和miRanda分析miR-34的靶基因,并运用GO和KEGG进行miR-34靶基因的功能富集分析;最后采用实时荧光定量PCR方法检测大型溞在环境浓度6 mg/L DBP暴露24 h和48 h后,大型溞miR-34及其靶基因Bcl-2的表达变化。结果显示,miR-34序列在物种进化过程中具有高度保守性,13个物种的序列有17个碱基完全一致。miR-34靶基因的GO和KEGG的功能聚类分析发现,这些靶基因参与多个信号通路,主要富集在细胞内转录调控、信号转导和胞吞作用等生物学过程中。DBP暴露48 h大型溞miR-34的相对表达水平明显上调,靶基因Bcl-2的mRNA相对表达则相反,表明大型溞miR-34与Bcl-2的负调控关系。结果提示miR-34可能在大型溞对DBP毒性作用的响应过程中发挥作用,其中miR-34可通过调控Bcl-2的表达水平来影响大型溞细胞的生命活动。这对于分析水生无脊椎动物在毒性胁迫时的调节应对机制有一定的借鉴作用。
The purpose of this study was to investigate the function of miR-34 targeted genes and the expression and regulation relationship between miR-34 and its target gene Bcl-2 in Daphnia magna exposed to Dibutyl phthalate (DBP). Firstly, miRbase database, Clustal W and MEGA7.0 software were used to analyze the sequence conservation of miR-34 in various species. The target genes of miR-34 were analyzed by Targetscan and miRanda. The functional enrichment analysis of miR-34 target genes was performed using GO and KEGG. Finally, real-time quantitative PCR method was used to detect the expression changes of miR-34 and its target gene Bcl-2 in D. magna exposed to environmental concentration of 6 mg/L DBP for 24 h and 48 h. The results showed that the miR-34 sequence was highly conserved during species evolution. The sequences of 13 species have 17 bases identical. GO and KEGG functional clustering analysis of miR-34 target genes found that these target genes were involved in multiple signaling pathways. The main biological processes analyzed for GO enrichment are intracellular transcriptional regulation, signal transduction and endocytosis. The relative ex-pression level of miR-34 was significantly up-regulated in Daphnia magna after DBP exposure for 48 h. The relative mRNA expression of the target gene Bcl-2 was opposite. It indicated the negative regulation relationship between miR-34 and Bcl-2 in D. magna. The results suggest that miR-34 may play a role in the response of D. magna to DBP toxicity. Among them, miR-34 affects the life ac-tivities of cells by regulating the expression level of Bcl-2. This has a certain reference for studying the regulatory response mechanism of aquatic invertebrates under toxic stress.

References

[1]  孔昊玥, 刘红玲. 最大累积率识别中国地表水中邻苯二甲酸酯类关键污染物和复合污染生态风险[J]. 环境化学, 2021, 40(3): 706-716.
[2]  樊祥科, 郑浩, 杨振, 等. 长江干流江苏段水质中邻苯二甲酸酯的测定及分布现状[J]. 环境监测管理与技术, 2016, 28(3): 45-47+51.
[3]  Zhao, X., Ying, G. and Qi, M. (2014) Toxicity of Phthalate Esters Exposure to Carp (Cyprinus carpio) and Antioxidant Response by Biomarker. Ecotoxicology, 23, 626-632.
https://doi.org/10.1007/s10646-014-1194-x
[4]  刘慧杰, 舒为群. 邻苯二甲酸二丁酯生殖发育毒性研究进展[J]. 环境与健康杂志, 2004, 21(2): 122-124.
[5]  Hu, J., Jiang, K., Tang, X., et al. (2020) Chronic Exposure to Din-butyl Phthalate Causes Reproductive Toxicity in Zebrafish. Journal of Applied Toxicology, 40, 1694-1703.
https://doi.org/10.1002/jat.4030
[6]  Tompsett, A.R., Wiseman, S. and Higley, E. (2013) Effects of Exposure to 17α-Ethynylestradiol during Sexual Differentiation on the Transcriptome of the African Clawed Frog (Xenopus laevis). Environmental Science & Technology, 47, 4822-4828.
https://doi.org/10.1021/es400436y
[7]  Gardner, S.T., Wood, A.T., Lester, R., et al. (2016) Assessing Differences in Toxicity and Teratogenicity of Three Phthalates, Diethyl Phthalate, Di-n-propyl Phthalate, and Di-n-butyl Phthalate, Using Xenopus laevis Embryos. Journal of Toxicology & En-vironmental Health, Part A, 79, 71-82.
https://doi.org/10.1080/15287394.2015.1106994
[8]  Mu, X., Huang, Y., Li, J., et al. (2018) New Insights into the Mechanism of Phthalate-Induced Developmental Effects. Environmental Pollu-tion, 241, 674-683.
https://doi.org/10.1016/j.envpol.2018.05.095
[9]  Shen, C., Wei, J., Wang, T., et al. (2019) Acute Toxicity and Responses of Antioxidant Systems to Dibutyl Phthalate in Neonate and Adult Daphnia Magna. PeerJ, 7, e6584.
https://doi.org/10.7717/peerj.6584
[10]  Wei, J., Shen, Q., Ban, Y., et al. (2018) Characterization of Acute and Chronic Toxicity of DBP to Daphnia magna. Bulletin of Environmental Contamination and Toxicology, 101, 214-221.
https://doi.org/10.1007/s00128-018-2391-8
[11]  Ji, Q., Hao, X., Zhang, M., et al. (2009) MicroRNA miR-34 Inhibits Human Pancreatic Cancer Tumor-Initiating Cells. PLOS ONE, 4, e6816.
https://doi.org/10.1371/journal.pone.0006816
[12]  Li, H., Di, G., et al. (2019) MicroRNA-155 and mi-croRNA-181a, via HO-1, Participate in Regulating the Immunotoxicity of Cadmium in the Kidneys of Exposed Cyprinus carpio. Fish & Shellfish Immunology, 95, 473-480.
https://doi.org/10.1016/j.fsi.2019.11.010
[13]  Zhou, Z., et al. (2014) The Identification and Characteristics of Im-mune-Related MicroRNAs in Haemocytes of Oyster Crassostrea gigas. PLOS ONE, 9, e88397.
https://doi.org/10.1371/journal.pone.0088397
[14]  Liu, Q., Yang, J., et al. (2019) Role of miR-731 and miR-2188-3p in Mediating Chlorpyrifos Induced Head Kidney Injury in Common Carp via Targeting TLR and Apopto-sis Pathways. Aquatic Toxicology, 215, Article ID: 105286.
https://doi.org/10.1016/j.aquatox.2019.105286
[15]  黎健, 赵婷, 陈丰原. miR-34a调控内皮祖细胞介导的血管新生[J]. 中国动脉硬化杂志, 2011, 19(3): 232-233.
[16]  楚利涛, 李兴华, 朱梁豫, 等. 骨肉瘤患者血清中miR-34a, miR-449a表达及与新辅助化疗耐药的关系[J]. 实用癌症杂志, 2022, 37(3): 388-391.
[17]  李华晓, 麦浩坚, 宋同均, 等. miR-34a-5p靶向BCAN对胶质瘤细胞增殖,迁移的影响[J]. 临床神经外科杂志, 2022, 19(2): 148-155.
[18]  Lau, N.C., et al. (2001) An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caeno-rhabditis elegans. Science, 294, 858-862.
https://doi.org/10.1126/science.1065062
[19]  Hermeking, H. (2010) The miR-34 Family in Cancer and Apoptosis. Cell Death & Differentiation, 17, 193-199.
https://doi.org/10.1038/cdd.2009.56
[20]  Bommer, G.T., et al. (2007) p53-Mediated Activation of miRNA34 Can-didate Tumor-Suppressor Genes. Current Biology, 17, 1298-1307.
https://doi.org/10.1016/j.cub.2007.06.068
[21]  Oltval, Z.N., et al. (1993) Bcl-2 Heterodimerizes in Vivo with a Conserved Homolog, Bax, That Accelerates Programmed Cell Death. Cell, 74, 609-619.
https://doi.org/10.1016/0092-8674(93)90509-O
[22]  陆健, 张佳佳, 周国勤, 等. 急性高温胁迫对大口黑鲈“优鲈3号”肝脏凋亡相关酶活性和基因表达的影响[J]. 淡水渔业, 2021, 51(2): 81-86.
[23]  Lawen, A. (2003) Apopto-sis—An Introduction. Bioessays, 25, 888-896.
https://doi.org/10.1002/bies.10329
[24]  丁晨雨, 胡利双, 李云, 等. 低氧胁迫对鲢心肌细胞凋亡及其调控基因Bax, Bcl-2表达的影响[J]. 淡水渔业, 2018, 48(2): 10-15.
[25]  Hu, J., et al. (2018) Analysis of the microRNA Transcriptome of Daphnia pulex during Aging. Gene, 664, 101-110.
https://doi.org/10.1016/j.gene.2018.04.034
[26]  Lyu, K., et al. (2013) Copper/Zinc Superoxide Dismutase from the Cladoceran Daphnia magna: Molecular Cloning and Expression in Response to Different Acute Environmental Stressors. Environmental Science & Technology, 47, 8887-8893.
https://doi.org/10.1021/es4015212
[27]  胡卫星, 刘晓宇, 陈贝, 等. 渭河流域西安段水体中DBP污染特征及生态风险评价[J]. 环境保护科学, 2020, 46(1): 84-90.
[28]  陈慧. 环境水体中典型邻苯二甲酸酯的污染水平及其复合暴露对斑马鱼的生殖毒性[D]: [博士学位论文]. 镇江: 江苏大学, 2020.
[29]  黄涵年, 郭江峰. MicroRNA在环境毒理学中的研究进展[J]. 生命科学, 2013, 25(11): 1115-1120.
[30]  Lewis, B.P., et al. (2003) Prediction of Mammalian MicroRNA Targets. Cell, 115, 787-798.
https://doi.org/10.1016/S0092-8674(03)01018-3
[31]  陈晨, 王欣, 沈兴家. miR-34家族抑制肿瘤作用的研究进展[J]. 温州医科大学学报, 2016, 46(3): 231-235.
[32]  高佳莉, 罗玉萍, 李思光. miR-34基因家族的分子进化[J]. 动物学研究, 2007, 28(3): 271-278.
[33]  王洪一, 郭洪, 李娟, 等. mir-34a的表达调控及其与肿瘤发生的关系[J]. 医学综述, 2012, 18(7): 1020-1023.
[34]  Yamakuchi, M. and Lowenstein, C.J. (2009) MiR-34, SIRT1 and p53: The Feedback Loop. Cell Cycle, 8, 712-715.
https://doi.org/10.4161/cc.8.5.7753
[35]  Rokavec, M., et al. (2014) The p53/miR-34 Axis in Development and Disease. Journal of Molecular Cell Biology, 6, 214-230.
https://doi.org/10.1093/jmcb/mju003
[36]  王雷. miR-34a通过Notch信号通路影响乳腺癌细胞的生物学行为[J]. 中国比较医学杂志, 2016, 26(11): 61-65.
[37]  李燕玮, 刘艺薇. miR-34a通过靶基因Notch1调控子宫内膜癌细胞的增殖和凋亡[J]. 现代肿瘤医学, 2019, 27(1): 26-29.
[38]  Chang, T.C., et al. (2007) Transactivation of miR-34a by p53 Broadly Influences Gene Expression and Promotes Apoptosis. Molecular Cell, 26, 745-752.
https://doi.org/10.1016/j.molcel.2007.05.010
[39]  Cui, Y., Yang, X. and Zhang, X. (2017) Shrimp miR-34 from Shrimp Stress Response to Virus Infection Suppresses Tumor-igenesis of Breast Cancer. Molecular Therapy-Nucleic Acids, 9, 387-398.
https://doi.org/10.1016/j.omtn.2017.10.016
[40]  Yang, J., et al. (1997) Prevention of Apoptosis by Bcl-2: Release of Cytochrome c from Mitochondria Blocked. Science, 275, 1129-1132.
https://doi.org/10.1126/science.275.5303.1129
[41]  Borner, C. (2003) The Bcl-2 Protein Family: Sensors and Checkpoints for Life-or-Death Decisions. Molecular Immunology, 39, 615-647.
https://doi.org/10.1016/S0161-5890(02)00252-3
[42]  卫明亮, 张志伟, 张志勇, 等. 冷应激对黑鲷组织损伤及细胞凋亡基因表达的影响[J]. 南方水产科学, 2022(18): 1-8.
[43]  李海军. 草鱼凋亡相关基因Caspase9和BCL-2克隆、原核表达及其在镉胁迫下表达分析[D]: [硕士学位论文]. 南昌: 江西师范大学, 2016.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133