全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

植物根际促生细菌与根瘤菌互作的研究进展
Advances in Studies on the Interaction between PGPR and Rhizobium

DOI: 10.12677/AMB.2022.112017, PP. 141-147

Keywords: 植物根际促生细菌,根瘤菌,共接种,互作
PGPR
, Rhizobium, Co-Inoculation, Interaction

Full-Text   Cite this paper   Add to My Lib

Abstract:

生物固氮是自然界最为主要的氮素积累方式,豆科植物与根瘤菌共生体固氮量占全球生物固氮总量的65%以上,是目前重要的固氮系统之一。植物根际促生菌(Plant Growth Promoting Rhizobacteria, PGPR)能有效促进植物生长,增强植物的系统抗性,进而提高农作物的产量。然而,单一根瘤菌在多种土壤环境下,仍存在适应能力差、结瘤效率低和促生效果不理想等问题,因此,目前已将目光聚焦于植物根际促生菌与根瘤菌共接种,从而促进植物生长,提高植物抗逆性。本文就植物根际促生菌与根瘤菌共接种组合对植物生长、抗逆性的影响及相应的作用机制进行综述,并对今后深入研究植物根际促生菌和根瘤菌相互作用,以期为生产高效复合菌肥,从而提高可持续农业生态系统生产力进行了展望。
Biological nitrogen fixation (BNF) is the most crucial way of nitrogen fixation. Legume-rhizobium symbiosis accounts for over 65% of the total nitrogen fixed by biological nitrogen fixation process, which is one of the BNF research focuses. Plant growth promoting rhizobacteria (PGPR) can promote plant growth, enhance systemic resistance, and increase crop yield. However, there are still some problems such as poor adaptability, low nodulation efficiency and unsatisfactory growth promoting effect of inoculating single rhizobium in a variety of soil environments. Therefore, research has been focused on co-inoculation of PGPR and rhizobium to promote plant growth and improve plant stress resistance. In this paper, the effects of PGPR and rhizobium on plant growth, stress resistance and the corresponding mechanism were reviewed, and the future research on the interaction between PGPR and rhizobium was also prospected for the production of high-efficiency compound fungal fertilizer and the improvement of sustainable agricultural ecosystem productivity.

References

[1]  曾昭海, 胡跃高, 陈文新, 等. 共生固氮在农牧业上的作用及影响因素研究进展[J]. 中国生态农业学报, 2006, 14(4): 21-24.
[2]  刘永秀, 张福锁, 毛达如. 根际微生态系统中豆科植物-根瘤菌共生固氮及其在可持续农业发展中的作用[J]. 中国农业科技导报, 1999, 1(4): 28-33.
[3]  Sprent, J.I. and Parsons, R. (2000) Nitrogen Fixation in Legume and Non-Legume Trees. Field Crops Research, 65, 183-196.
https://doi.org/10.1016/S0378-4290(99)00086-6
[4]  姚拓. 饲用燕麦和小麦根际促生菌特性研究及其生物菌肥的初步研制[D]: [博士学位论文]. 兰州: 甘肃农业大学, 2002.
[5]  师尚礼. 紫花苜蓿根瘤菌研究进展[J]. 甘肃农业大学学报, 2005(2): 131-136.
[6]  孟庆杰, 王光全. 生物固氮及其应用[J]. 生物学教学, 2004(5): 8-9.
[7]  刘丽, 马鸣超, 姜昕, 等 根瘤菌与促生菌双接种对大豆生长和土壤酶活的影响[J]. 植物营养与肥料学报, 2015, 21(3): 644-654.
[8]  刘冠一. 盐碱胁迫下接种PGPR和根瘤菌对紫花苜蓿生长的影响[D]: [硕士学位论文]. 哈尔滨: 哈尔滨师范大学, 2017.
[9]  Kloepper, J.W. and Schroth, M.N. (1978) Plant Growth-Promoting Rhizobacteria on Radishes. In: Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, Gilbert-Clarey Tours, Paris, 879-882.
[10]  Kloepper, J.W., Leong, J., Teintze, M., et al. (1980) Enhanced Plant Growth by Siderophores Produced by Plant Growth Promoting Rhizobacteria. Nature, 286, 885-886.
https://doi.org/10.1038/286885a0
[11]  Kloepper, J.W. and Schroth, M.N. (1981) Relationship of in Vitro Antibiosis of Plant Growth Promoting Rhizobacteria to Plant Growth and the Displacement of Root Microflora. Phytopathology, 71, 1020-1024.
https://doi.org/10.1094/Phyto-71-1020
[12]  Bhattacharyya, P.N. and Jha, D.K. (2012) Plant Growth-Promoting Rhizobacteria (PGPR): Emergence in Agriculture. World Journal of Microbiology and Biotechnology, 28, 1327-1350.
https://doi.org/10.1007/s11274-011-0979-9
[13]  Paré, P.W., Zhang, H.M., Aziz, M., et al. (2011) Beneficial Rhizobacteria Induce Plant Growth: Mapping Signaling Networks in Arabidopsis. In: Witzany, G., Ed., Biocommunication in Soil Microorganisms, Springer, Berlin, 403-412.
https://doi.org/10.1007/978-3-642-14512-4_15
[14]  de Carvalho, R.H., da Concei??o, J.E., Favero, V.O., et al. (2020) The Co-Inoculation of Rhizobium and Bradyrhizobium Increases the Early Nodulation and Development of Common Beans. Journal of Soil Science and Plant Nutrition, 20, 860-864.
https://doi.org/10.1007/s42729-020-00171-8
[15]  Khanna, V. and Sharma, P. (2011) Potential for Enhancing Lentil (Lens culinaris) Productivity by Co-Inoculation with PSB, Plant Growth-Promoting Rhizobacteria and Rhizobium. Indian Journal of Agricultural Sciences, 81, 932-934.
[16]  Prakamhang, J., Tittabutr, P., Boonkerd, N., et al. (2015) Proposed Some Interactions at Molecular Level of PGPR Coinoculated with Bradyrhizobium diazoefficiens USDA110 and B. japonicum THA6 on Soybean Symbiosis and Its Potential of Field Application. Applied Soil Ecology, 85, 38-49.
https://doi.org/10.1016/j.apsoil.2014.08.009
[17]  Camacho, M., Santamaría, C., Temprano, F., et al. (2001) Co-Inoculation with Bacillus sp. CECT 450 Improves Nodulation in Phaseolus vulgaris L. Canadian Journal of Microbiology, 47, 1058-1062.
https://doi.org/10.1139/w01-107
[18]  Elkoca, E., Kantar, F. and Sahin, F. (2008) Influence of Nitrogen Fixing and Phosphorus Solubilizing Bacteria on the Nodulation, Plant Growth, and Yield of Chickpea. Journal of Plant Nutrition, 31, 157-171.
https://doi.org/10.1080/01904160701742097
[19]  Atieno, M., Herrmann, L., Okalebo, R., et al. (2012) Efficiency of Different Formulations of Bradyrhizobium japonicum and Effect of Co-Inoculation of Bacillus subtilis with Two Different Strains of Bradyrhizobium japonicum. World Journal of Microbiology and Biotechnology, 28, 2541-2550.
https://doi.org/10.1007/s11274-012-1062-x
[20]  Younesi, O., Baghbani, A. and Namdari, A. (2013) The Effects of Pseudomonas fluorescence and Rhizobium meliloti Co-Inoculation on Nodulation and Nineral Nutrient Contents in Alfalfa (Medicago sativa) under Salinity Stress. International Journal of Agriculture and Crop Sciences, 5, 1500.
[21]  Aung, T.T., Tittabutr, P., Boonkerd, N., et al. (2013) Co-Inoculation Effects of Bradyrhizobium japonicum and Azospirillum sp. on Competitive Nodulation and Rhizosphere Eubacterial Community Structures of Soybean under Rhizobia-Established Soil Conditions. Academic Journals, 12, 2850-2862.
[22]  Masciarelli, O., et al. (2014) A New PGPR Co-Inoculated with Bradyrhizobium japonicum Enhances Soybean Nodulation. Microbiological Research, 169, 609-615.
https://doi.org/10.1016/j.micres.2013.10.001
[23]  Mishra, P.K., Mishra, S., Selvakumar, G., et al. (2009) Coinoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum Enhances Plant Growth and Nodulation of Pea (Pisum sativum L.) and Lentil (Lens culinaris L.). World Journal of Microbiology and Biotechnology, 25, 753-761.
https://doi.org/10.1007/s11274-009-9963-z
[24]  Zahir, Z.A., Zafar-Ul-Hye, M., Sajjad, S., et al. (2011) Comparative Effectiveness of Pseudomonas and Serratia sp. Containing ACC-Deaminase for Coinoculation with Rhizobium leguminosarum to Improve Growth, Nodulation, and Yield of Lentil. Biology and Fertility of Soils, 47, 457-465.
https://doi.org/10.1007/s00374-011-0551-7
[25]  Yadav, J. and Verma, J.P. (2014) Effect of Seed Inoculation with Indigenous Rhizobium and Plant Growth Promoting Rhizobacteria on Nutrients Uptake and Yields of Chickpea (Cicer arietinum L.). European Journal of Soil Biology, 63, 70-77.
https://doi.org/10.1016/j.ejsobi.2014.05.001
[26]  王艳霞, 解志红. 根瘤菌诱变育种在根瘤菌-豆科植物共生体系中的研究进展[J]. 生物技术进展, 2019, 9(2): 101-107.
[27]  Ventorino, V., Caputo, R., Pascale, S.D., et al. (2012) Response to Salinity Stress of Rhizobium leguminosarum bv. viciae Strains in the Presence of Different Legume Host Plants. Annals of Microbiology, 62, 811-823.
https://doi.org/10.1007/s13213-011-0322-6
[28]  Egamberdieva, D., Berg, G., Lindstr?m, M.K., et al. (2013) Alleviation of Salt Stress of Symbiotic Galega officinalis L. (Goat’s Rue) by Co-Inoculation of Rhizobium with Root-Colonizing Pseudomonas. Plant and Soil, 369, 453-465.
https://doi.org/10.1007/s11104-013-1586-3
[29]  Kaur, J., Khanna, V., Kumari, P., et al. (2015) Influence of Psychrotolerant Plant Growth-Promoting Rhizobacteria (PGPR) as Coinoculants with Rhizobium on Growth Parameters and Yield of Lentil (Lens culinaris Medikus). African Journal of Microbiology Research, 9, 258-264.
https://doi.org/10.5897/AJMR2014.7237
[30]  Glick, B.R., Penrose, D.M. and Li, J. (1998) A Model for the Lowering of Plant Ethylene Concentrations by Plant Growth-Promoting Bacteria. Journal of Theoretical Biology, 190, 63-68.
https://doi.org/10.1006/jtbi.1997.0532
[31]  Bederska-Baszczyk, M., Sujkowska-Rybkowska, M. and Borucki, W. (2021) Sinorhizobium medicae 419 vs S. meliloti 1021: Differences in Root Nodules Induced by These Two Strains on the Medicago truncatula Host. Acta Physiologiae Plantarum, 43, Article No. 7.
https://doi.org/10.1007/s11738-020-03166-1
[32]  diCenzo, G.C., Zamani, M., Checcucci, A., et al. (2018) Multi-Disciplinary Approaches for Studying Rhizobium-Legume Symbioses. Canadian Journal of Microbiology, 65, 1-33.
https://doi.org/10.1139/cjm-2018-0377
[33]  Li, M., Wei, Z., Wang, J., et al. (2019) Facilitation Promotes Invasions in Plant-Associated Microbial Communities. Ecology Letters, 22, 149-158.
https://doi.org/10.1111/ele.13177
[34]  Foster, K.R. and Bell, T. (2012) Competition, Not Cooperation, Dominates Interactions among Culturable Microbial Species. Current Biology, 22, 1845-1850.
https://doi.org/10.1016/j.cub.2012.08.005
[35]  Kéfi, S., Berlow, E.L., Wieters, E., et al. (2012) Integrating Non-Feeding Interactions into Food Webs. Ecology Letters, 193, 985-996.
[36]  Mulder, C.P.H., Uliassi, D.D. and Doak, D.F. (2001) Physical Stress and Diversity-Productivity Relationships: The Role of Positive Interactions. Proceedings of the National Academy of Sciences of the United States of America, 98, 6704-6708.
https://doi.org/10.1073/pnas.111055298
[37]  Wei, Z., Yang, T., Friman, V.P., et al. (2015) Trophic Network Architecture of Root-Associated Bacterial Communities Determines Pathogen Invasion and Plant Health. Nature Communications, 6, Article No. 8413.
https://doi.org/10.1038/ncomms9413
[38]  Hu, J., Wei, Z., Friman, V.P., et al. (2016) Probiotic Diversity Enhances Rhizosphere Microbiome Function and Plant Disease Suppression. mBio, 7, e01790-16.
https://doi.org/10.1128/mBio.01790-16
[39]  Bais, H.P., Vepachedu, R., Gilroy, S., et al. (2003) Allelopathy and Exotic Plant Invasion: From Molecules and Genes to Species Interactions. Science, 301, 1377-1380.
https://doi.org/10.1126/science.1083245
[40]  Shea, K. and Chesson, P. (2002) Community Ecology Theory as a Framework for Biological Invasions. Trends in Ecology and Evolution, 17, 170-176.
https://doi.org/10.1016/S0169-5347(02)02495-3
[41]  Mallon, C.A., Elsas, J.D.V. and Salles, J.F. (2015) Microbial Invasions: The Process, Patterns, and Mechanisms. Trends in Microbiology, 23, 719-729.
https://doi.org/10.1016/j.tim.2015.07.013
[42]  Case, T.J. (1991) Invasion Resistance Arises in Strongly Interacting Species-Rich Model Competition Communities. Proceedings of the National Academy of Sciences, 87, 9610-9614.
https://doi.org/10.1073/pnas.87.24.9610
[43]  Cronin, D. (1997) Ecological Interaction of a Biocontrol Pseudomonas fluorescens Strain Producing 2,4-Diacetyl- phloroglucinol with the Soft Rot Potato Pathogen Erwinia carotovora subsp. atroseptica. FEMS Microbiology Ecology, 23, 95-106.
https://doi.org/10.1111/j.1574-6941.1997.tb00394.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133