|
被动跟踪测量系统轴系误差补偿研究
|
Abstract:
为了满足工业机器人空间精度的测量,提出了一种新型被动跟踪测量系统。分别对其轴系静态位置误差和方位转台中竖直轴的倾斜角度误差进行测量,然后通过与坐标测量机(CMM)进行比对实验,得到补偿前后被动跟踪测量系统测量精度的变化。首先,在对被动跟踪测量系统各轴系静态误差进行测量的同时,采用光电自准直仪对竖直轴的倾斜原始误差进行测量,并通过对原数据处理,去掉一次谐波分离出倾斜误差;然后,基于HTM方法建立从竖轴到末端标准球的误差补偿模型;最后,由坐标测量机带动被动跟踪测量系统进行空间点阵运动。实验表明,补偿前被动激光跟踪仪的测量精度为600 μm;经轴系静态误差模型补偿后测量精度为138.1 μm;加竖直轴倾斜误差补偿后测量精度为119.4 μm。由此证实,经补偿后的被动跟踪测量系统的测量精度有明显提高。
In order to measure the spatial accuracy of industrial robots, a new passive tracking measurement system is proposed. The static position error of the shaft system and the tilt Angle error of the vertical axis in the azimuth turntable were measured, and then the measurement accuracy changes of the passive tracking measurement system before and after compensation were obtained by comparing with the coordinate measuring machine (CMM). Firstly, when the static errors of passive tracking measurement system are measured, the original tilt errors of vertical axis are measured by photoelectric autocollimator, and the first harmonic is removed by processing the original data to separate the tilt errors. Then, an error compensation model from the vertical axis to the end standard sphere is established based on HTM method. Finally, the passive tracking measurement system is driven by the coordinate measuring machine to move the space lattice. Experimental results show that the measurement accuracy of the passive laser tracker before compensation is 600 μm. The measurement accuracy is 138.1 μm after compensating the static error model of warp shafting. The measurement accuracy is 119.4 μm after vertical axis tilt error compensation. It is proved that the measurement accuracy of the passive tracking measurement system is improved obviously after error compensation.
[1] | 2018年工业机器人行业现状与发展趋势分析[N]. 中国工业报, 2018-01-16(005). |
[2] | 周维虎. 大尺寸空间坐标测量系统精度理论若干问题的研究[D]. 合肥: 合肥工业大学, 2000. |
[3] | Lau, K., Hocken, R. and Haynes, L. (1985) Robot Performance Measurements Using Automatic Laser Tracking Techniques. Robotics and Computer-Integrated Manufacturing, 2, 227-236. https://doi.org/10.1016/0736-5845(85)90110-3 |
[4] | Lau, K., Hocken, R.J. and Haight, W.C. (1986) Automatic Laser Tracking Interferometer System for Robot Metrology. Precision Engineering, 8, 3-8. https://doi.org/10.1016/0141-6359(86)90002-4 |
[5] | Gassner, G. and Ruland, R. (2008) Laser Tracker Calibration—Testing the Angle Measurement System. SLAC National Accelerator Laboratory, Menlo Park, CA. |
[6] | Martin, D. and Chetwynd, D.G. (2008) High Precision Angle Calibration of Robotic Total Stations and Laser Trackers. Fifth International Symposium on Instrumentation Science and Technology, Shenyang, 15-18 September 2008, 71331S.
https://doi.org/10.1117/12.821231 |
[7] | 王玉田. 三轴转台轴线垂直度的测试方法[J]. 计测技术, 2014, 34(1): 42-44+52. |
[8] | 苏文. 两轴稳定转台轴垂直度检测方法[J]. 光电技术应用, 2014, 29(4): 57-60. |
[9] | 崔成君, 劳达宝, 高书苑, 等. 飞秒激光跟踪仪光轴与竖轴同轴度的标定[J]. 光学精密工程, 2016, 24(11): 2651-2657. |
[10] | Loser, R. and Kyle, S. (1999) Alignment and Field Check Procedures for the Leica Laser Tracker LTD 500. Boeing Large Scale Optical Metrology Seminar, Seattle, 1-4. |
[11] | Muralikrishnan, B., Sawyer, D., Blackburn, C., et al. (2009) ASME B89. 4.19 Performance Evaluation Tests and Geometric Misalignments in Laser Trackers. Journal of Research of the National Institute of Standards and Technology, 114, 21-35. https://doi.org/10.6028/jres.114.003 |
[12] | Muralikrishnan, B., Ferrucci, M., Sawyer, D., et al. (2015) Volumetric Performance Evaluation of a Laser Scanner Based on Geometric Error Model. Precision Engineering, 40, 139-150.
https://doi.org/10.1016/j.precisioneng.2014.11.002 |
[13] | Conte, J., Santolaria, J., Majarena, A.C., et al. (2015) Laser Tracker Kinematic Error Model Formulation and Subsequent Verification under Real Working Conditions. Procedia Engineering, 132, 788-795.
https://doi.org/10.1016/j.proeng.2015.12.561 |
[14] | 周维虎, 费业泰, 李百源, 等. 激光跟踪仪几何误差修正[J]. 仪器仪表学报, 2002, 23(1): 56-59+63. |
[15] | Liu, L., Lou, Z.F., Huang, Y.B., et al. (2020) A Five Degrees-of-Freedom Errors Measurement System for Rotary Axis with Reference Laser for Reference Axis Alignment. Review of Scientific Instruments, 91, Article ID: 075101.
https://doi.org/10.1063/5.0013242 |
[16] | Lou, Z.F., Gao, R., Zhang, J.Y., et al. (2020) Tests for Position and Orientation Errors of Axes of a 2D Rotary Stage. Measurement Science and Technology, 31, Article ID: 115014. https://doi.org/10.1088/1361-6501/ab8ee7 |