全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于仿鲨鱼皮表面微织构的冷却流道散热特性研究
Study on Heat Dissipation Characteristics of Cooling Channel Based on Microtexture of Shark Skin Surface

DOI: 10.12677/MET.2022.113033, PP. 283-291

Keywords: 鲨鱼皮,仿生,表面微织构,散热特性,流固耦合
Shark Skin
, Bionic, Surface Microtexture, Heat Dissipation Characteristics, Fluid Structure Coupling

Full-Text   Cite this paper   Add to My Lib

Abstract:

散热对精密机械、电子器件的正常工作至关重要。基于自然界中鲨鱼皮的表面微组织结构,本文构建了光滑平直冷却流道模型和锯齿形、圆齿形两种仿鲨鱼皮表面微织构冷却流道模型,通过采用流固耦合方法进行数值模拟,分析对比了三种冷却流道模型的散热效果。研究表明:两种仿鲨鱼皮表面微织构冷却流道模型相较于光滑平直冷却流道模型有比较明显的散热效果;齿高的增大和冷却液流速的提高都能增强两种仿鲨鱼皮表面微织构冷却流道模型的散热效果;冷却液流向与流道方向夹角的增大使两种仿鲨鱼皮表面微织构冷却流道模型的散热效果下降;相同条件下,锯齿形冷却流道模型相较于圆齿形结构的散热优势更为突出。研究结果可为散热优化研究提供参考。
Heat dissipation performance is important for normal function of precision machinery and electronic devices. Based on the surface microtexture of shark skin in nature, in this paper, the smooth flat cooling channel model and two kinds of shark skin surface microtexture cooling channel models with saw tooth or circular tooth are constructed. Through numerical simulation with fluid structure coupling method, the heat dissipation effects of three cooling channel models are analyzed and compared. The results show that the two kinds of shark skin surface microtexture cooling channel models have obvious heat dissipation effect compared with the smooth flat cooling channel model. The increase of tooth height and coolant flow rate can enhance the heat dissipation effect of the two kinds of shark skin surface microtexture cooling channel models. And the increase of the angle between the coolant flow direction and the flow channel direction decreases the heat dissipation effect of them. Under the same conditions, the heat dissipation advantage of cooling channel model with sawtooth is more prominent than that of cooling channel model with circular tooth. The research results can provide reference for heat dissipation optimization research.

References

[1]  Bechert, D.W., Bruse, M., Hage, W., et al. (1997) Experiments on Drag-Reducing Surfaces and Their Optimization with an Adjustable Geometry. Journal of Fluid Mechanics, 338, 59-87.
https://doi.org/10.1017/S0022112096004673
[2]  侯磊. 椭圆振动辅助切削微织构的轨迹生成与过程仿真研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2019.
[3]  谢峰, 王秀英, 雷小宝. 鲨鱼皮减阻结构的几何建模与数值分析[J]. 系统仿真学报, 2014, 26(7): 1472-1476.
[4]  Bhushan, B. (2012) Shark Skin Surface for Fluid-Drag Reduction in Turbulent Flow. Springer, Cham.
https://doi.org/10.1007/978-3-642-25408-6_10
[5]  秦杰. 仿生微流道散热器结构优化及流动散热特性研究[D]: [硕士学位论文]. 成都: 电子科技大学, 2012: 1-33.
[6]  吴龙文, 卢婷, 陈加进, 等. 芯片散热微通道仿生拓扑结构研究[J]. 电子学报, 2018, 46(5): 132-138.
[7]  Bai, Q., Bai, J., Meng, X., et al. (2016) Drag Reduction Characteristics and Flow Field Analysis of Textured Surface. Friction, 4, 165-175.
https://doi.org/10.1007/s40544-016-0113-y
[8]  Walsh, M.J. (2012) Riblets as a Viscous Drag Reduction Technique. AIAA, 21, 485-486.
https://doi.org/10.2514/3.60126
[9]  Hefner, J.N., Bushnell, D.M. and Walsh, M.J. (1983) Research on Non-Planar Wall Geometries for Turbulence Control and Skin-Friction Reduction.
[10]  Walsh, M.J. (1982) Turbulent Boundary Layer Drag Reduction Using Riblets. AIAA, Aerospace Sciences Meeting, Hampton, Virginia.
https://doi.org/10.2514/6.1982-169
[11]  Walsh, M.J. and Lindemann, A.M. (1984) Optimization and Application of Riblets for Turbulent Drag Reduction. American Institute of Aeronautics and Astronautics, Hampton, Virginia.
https://doi.org/10.2514/6.1984-347
[12]  雒悦豪, 田锡天, 马贵斌, 等. 微细沟槽面提高航空设备柜散热率的仿真分析[J]. 航空制造技术, 2014, 448(4): 94-95.
[13]  雒悦豪, 陈学永, 田锡天, 等. 探索减小航空设备柜散热系统通道压降的方法[J]. 航空精密制造技术, 2013, 49(3): 47-51.
[14]  郑彬. 基于表面微结构的高超声速飞行器减阻降温技术研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2015: 62-84.
[15]  刘宝胜, 吴为, 曾元松. 鲨鱼皮仿生结构应用及制造技术综述[J]. 塑性工程学报, 2014(4): 56-62.
[16]  Reif, W.E. (1985) Squamation and Ecology of Sharks. CFS Courier Forschungsinstitut Senckenberg, 78, 1-255.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133