全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Geochemistry of Mafic Rocks from the Birimian Basement of Doropo (Northeast of C?te d’Ivoire): Petrogenetic and Geodynamic Implications

DOI: 10.4236/ojg.2022.126024, PP. 504-520

Keywords: Doropo, Mafic Intrusive, Birimian, Crustal Contamination

Full-Text   Cite this paper   Add to My Lib

Abstract:

The northeastern region of Côte d’Ivoire is characterised by a granitic basement mainly composed of biotite granite rocks. According to mapping work in the Gbabédjou and Doropo areas, these Birimian granitoids are cut by gabbro dykes and amphibolite enclaves, which are the subject of this study. In order to better understand the role and the implication of mafic rocks in the Doropo basement emplacement, a multidisciplinary methodology integrating microscopic observations and geochemical analyses of major and trace elements was carried out on 4 samples considered representative of the outcrops studied. Green hornblende, clinopyroxene, and accessory sphene minerals are found in mafic mineral phases, according to petrographic research. Whole-rock analyses reveal that mafic samples with TiO2 contents < 2% are poor in Ti and have both calc-alkaline and tholeiitic rock affinities. They are metaluminous with A/CNK > 1.1 ratios giving them an orogenic granite nature (I-type). Their REE patterns are moderately fractionated (La/Sm)N = 2.66 - 6.13 and (La/Yb)N = 11.17 - 43.70) with a very negative Eu anomaly (Eu/Eu* = 0.75 - 0.97). The multi-element diagrams are characterized by negative Nb-Ta anomalies and geotectonic studies have identified them as volcanic arc formations. All these characteristics allowed us to distinguish the Doropo mafic rocks as formations originating from the juvenile continental crust, emplaced under the Archean tectonics model with significant crustal contamination in the source. Magma driven by mantle diapir has been injected at the base of the continental crust and the heat induces the partial melting of the overlying crust giving rise to mixed liquids. This magma now enriched in LILE was immediately drained to the upper crust to form the mafic rocks from the studied area.

References

[1]  Baratoux, L.L., Metelka, V., Naba, S., Jessell, M.W., Grégoire, M. and Ganne, J. (2011) Juvenile Paleoproterozoic Crust Evolution during the Eburnean Orogeny (~2.2-2.0 Ga), Western Burkina Faso. Precambrian Research, 191, 18-45.
https://doi.org/10.1016/j.precamres.2011.08.010
[2]  Perrouty, S., Aillères, L., Jessell, M.W., Baratoux, L., Bourassa, Y. and Crawford, B. (2012) Revised Eburnean Geodynamic Evolution of the Gold-Rich Southern Ashanti Belt, Ghana, with New Field and Geophysical Evidence of pre-Tarkwaian Deformations. Precambrian Research, 204-205, 12-39.
https://doi.org/10.1016/j.precamres.2012.01.003
[3]  Block, S., Ganne, J., Baratoux, L., Zeh, A., Parra, L.A., Jessell, M., Allères, L. and Siebenaller, L. (2016) Lower Crust Exhumation during Paleoproterozoic (Eburnean) Orogeny, NW Ghana, West African Craton: Interplay of Coeval Contractional Deformation and Extensional Gravitational Collapse. Precambrian Research, 274, 82-109.
https://doi.org/10.1016/j.precamres.2015.10.014
[4]  Mortimer, J. (1992) Lithostratigraphy of the Early Proterozoic Toumodi Volcanic Group in Central cote d’ivoire: Implications for Birrimian Stratigraphic Models. Journal of African Earth Sciences (and the Middle East), 14, 81-91.
https://doi.org/10.1016/0899-5362(92)90057-J
[5]  Sylvester, P.J. and Attoh, K. (1992) Lithostratigraphy and Composition of 2.1 Ga Greenstone Belts of the West African Craton and Their Bearing on Crustal Evolution and the Archean-Proterozoic Boundary. The Journal of Geology, 100, 377-393.
https://doi.org/10.1086/629593
[6]  Asiedu, D.K., Dampare, S.B., Sakyi, P.A., Banoeng-Yakubo, B., Osae, S., Nyarko, B.J.B. and Manu, J. (2004) Geochemistry of Paleoproterozoic Metasedimentary Rocks from the Birim Diamondiferous Field, Southern Ghana: Implications for Provenance and Crustal Evolution at the Archean-Proterozoic Boundary. Geochemical Journal, 38, 215-228.
https://doi.org/10.2343/geochemj.38.215
[7]  Dampare, S.B., Shibata, T., Asiedu, D.K., Osae, S. and Banoeng-Yakubo, B. (2008) Geochemistry of Paleoproterozoic Metavolcanic Rocks from the Southern Ashanti Volcanic Belt, Ghana: Petrogenetic and Tectonic Setting Implications. Precambrian Research, 162, 403-423.
https://doi.org/10.1016/j.precamres.2007.10.001
[8]  Abouchami, W., Boher, M., Michard, A. and Albarede, F. (1990) A Major 2.1 Ga Event of Mafic Magmatism in West Africa: An Early Stage of Crustal Accretion. Journal of Geophysical Research: Solid Earth, 95, 17605-17629.
https://doi.org/10.1029/JB095iB11p17605
[9]  Boher, M., Abouchami, W., Michard, A., Albarede, F. and Arndt, N.T. (1992) Crustal Growth in West Africa at 2.1 Ga. Journal of Geophysical Research: Solid Earth, 97, 345-369.
https://doi.org/10.1029/91JB01640
[10]  Abitty, E.K., Dampare, S.B., Nude, P.M. and Asiedu, D.K. (2016) Geochemistry and Petrogenesis of the K-Rich ‘Bongo-Type’ Granitoids in the Paleoproterozoic Bole-Nangodi Greenstone Belt of Ghana. Journal of African Earth Sciences, 122, 47-62.
https://doi.org/10.1016/j.jafrearsci.2015.08.011
[11]  Kouamelan, A.N., Delor, C. and Peucat, J.-J. (1997) Geochronological Evidence for Reworking of Archean Terrains during the Early Proterozoic (2.1 Ga) in the Western Cote D’Ivoire (Man Rise-West African Craton). Precambrian Research, 86, 177-199.
https://doi.org/10.1016/S0301-9268(97)00043-0
[12]  Koffi, G.R.-S., Kouamelan, A.N., Allialy, M.E., Coulibaly, Y. and Peucat, J.-J. (2020) Re-Evaluation of Leonian and Liberian Events in the Geodynamical Evolution of the Man-Leo Shield (West African Craton). Precambrian Research, 338, Article ID: 105582.
https://doi.org/10.1016/j.precamres.2019.105582
[13]  Thiéblemont, D., Goujou, J.C., Egal, E., Cocherie, A., Delor, C., Lafon, J.M. and Fanning, C.M. (2004) Archean Evolution of the Leo Rise and Its Eburnean Reworking. Journal of African Earth Sciences, 39, 97-104.
https://doi.org/10.1016/j.jafrearsci.2004.07.059
[14]  Eglinger, A., Thebaud, N., Zeh, A., Davis, J., Miller, J., Parra, L.A., Loucks, R., McCuaig, C. and Belousova, E. (2017) New Insights into the Crustal Growth of the Paleoproterozoic Margin of the Archean Kéména-Man Domain, West African Craton (Guinea): Implications for Gold Mineral System. Precambrian Research, 292, 258-289.
https://doi.org/10.1016/j.precamres.2016.11.012
[15]  Kouamelan, A.N., Djro, S.C., Allialy, M.E., Paquette, J.-L. and Peucat, J.-J. (2015) The Oldest Rock of Ivory Coast. Journal of African Earth Sciences, 103, 65-70.
https://doi.org/10.1016/j.jafrearsci.2014.12.004
[16]  Gouedji, F., Picard, C., Coulibaly, Y., Audet, M.A., Auge, T., Goncalves, P. and Ouattara, N. (2014) The Samapleu Maficultramafic Intrusion and Its Ni-Cu-PGE Mineralization: An Eburnean (2.09 Ga) Feeder Dyke to the Yacouba Layered Complex (Man Archean Craton, Western Ivory Coast). Bulletin de la Société Géologique de France, 185, 393-411.
https://doi.org/10.2113/gssgfbull.185.6.393
[17]  Hirdes, W., Davis, D.W., Lüdtke, G. and Konan, G. (1996) Two Generations of Birimian (Paleo-Proterozoic) Volcanic Belts in Northeastern Cote d’Ivoire (West Africa): Consequences for the “Birimian Controversy”. Precambrian Research, 80, 173-191.
https://doi.org/10.1016/S0301-9268(96)00011-3
[18]  Doumbia, S., Pouclet, A., Kouamelan, A., Peucat, J.J., Vidal, M. and Delor, C. (1998) Petrogenesis of Juvenile-Type Birimian (Paleoproterozoic) Granitoids in Central Cote-d’Ivoire, West Africa: Geochemistry and Geochronology. Precambrian Research, 87, 33-63.
https://doi.org/10.1016/S0301-9268(97)00201-5
[19]  Gasquet, D., Barbey, P., Adou, M. and Paquette, J.L. (2003) Structure, Sr-Nd Isotope Geochemistry and Zircon U-Pb Geochronology of the Granitoids of the Dabakala Area (Cote d’Ivoire): Evidence for a 2.3 Ga Crustal Growth Event in the Palaeoproterozoic of West Africa? Precambrian Research, 127, 329-354.
https://doi.org/10.1016/S0301-9268(03)00209-2
[20]  Naba, S., Lompo, M., Debat, P., Bouchez, J.L. and Béziat, D. (2004) Structure and Emplacement Model for Late-Orogenic Paleoproterozoic Granitoids: The Tenkodogo-Yamba Elongate Pluton (Eastern Burkina Faso). Journal of African Earth Sciences, 38, 41-57.
https://doi.org/10.1016/j.jafrearsci.2003.09.004
[21]  Dioh, E., Béziat, D., Debat, P., Grégoire, M. and Ngom, P.M. (2006) Diversity of the Palaeoproterozoic Granitoids of the Kédougou Inlier (Eastern Sénégal): Petrographical and Geochemical Constraints. Journal of African Earth Sciences, 44, 351-371.
https://doi.org/10.1016/j.jafrearsci.2005.11.024
[22]  Ilboudo, H., Sawadogo, S., Kagambega, N. and Remmal, T. (2021) Petrology, Geochemistry, and Source of the Emplacement Model of the Paleoproterozoic Tiébélé Granite Pluton, Burkina Faso (West-Africa): Contribution to Mineral Exploration. International Journal of Earth Sciences, 110, 1753-1781.
https://doi.org/10.1007/s00531-021-02039-3
[23]  Vidal, M., Gumiaux, C., Cagnard, F., Pouclet, A., Ouattara, G. and Pichon, M. (2009) Evolution of a Paleoproterozoic “Weak Type” Orogeny in the West African Craton (Ivory Coast). Tectonophysics, 477, 145-159.
https://doi.org/10.1016/j.tecto.2009.02.010
[24]  Metelka, V., Baratoux, L., Naba, S. and Jessell, M.W. (2011) A Geophysically Constrained Litho-Structural Analysis of the Eburnean Greenstone Belts and Associated Granitoid Domains, Burkina Faso, West Africa. Precambrian Research, 190, 48-69.
https://doi.org/10.1016/j.precamres.2011.08.002
[25]  Baratoux, L., Metelka, V., Siebenaller, L., Naba, S., Naré, A., Ouiya, P., Jessell, M.W., Béziat, D., Salvi, S. and Franceschi, G. (2015) Tectonic Evolution of the Gaoua Region, Burkina Faso: Implications for Mineralization. Journal of African Earth Sciences, 112, 419-439.
https://doi.org/10.1016/j.jafrearsci.2015.10.004
[26]  Augustin, J. and Gaboury, D. (2015) Paleoproterozoic Plume-Related Basaltic Rocks in the Mana Gold District in Western Burkina Faso, West Africa: Implications for Exploration and the Source of Gold in Orogenic Deposits. Journal of African Earth Sciences, 129, 17-30.
https://doi.org/10.1016/j.jafrearsci.2016.12.007
[27]  Amponsah, P.O., Salvi, S., Béziat, D., Siebenaller, L., Baratoux, L. and Jessell, M.W. (2015) Geology and Geochemistry of the Shear-Hosted Julie Gold Deposit, NW Ghana. Journal of African Earth Sciences, 112, 505-523.
https://doi.org/10.1016/j.jafrearsci.2015.06.013
[28]  Grenholm, M., Jessell, M. and Thébaud, N. (2019) A Geodynamic Model for the Paleoproterozoic (ca. 2.27-1.96 Ga) Birimian Orogen of the Southern West African Craton—Insights into an Evolving Accretionary-Collisional Orogenic System. Earth-Science Reviews, 192, 138-193.
https://doi.org/10.1016/j.earscirev.2019.02.006
[29]  Milési, J.P., Feybesse, J.L., Pinna, P., Deschamps, Y., Kampunzu, H., Muhongo, S., Lescuyer, J.L., Le Golf, E., Delor, C., Billa, M., Ralay, F. and Heinry, C. (2004) Geological Map of Africa 1:10,000,000, SIGAfrique Project. 20th Conference of African Geology, BRGM, Orléans, June 2004, 2-7.
[30]  Siagné, Z.H., Aifa, T., Kouamelan, A.N., Houssou, N.N. and Digbeu, W. (2021) Analyse Structurale De La Déformation Dans Les Granitoides éburnéens De La Région De Doropo (Nord-Est De La Cote d’Ivoire). European Scientific Journal, 17, 157-172.
https://doi.org/10.19044/esj.2021.v17n29p157
[31]  Skursch, O., Tegner, C., Lesher, C.E. and Cawthorn, R.G. (2020) Two Expressions of the Transition from Mafic Cumulates to Granitoids in the Bushveld Complex, South Africa: Examples from the Western and Eastern Limbs. Lithos, 372-373, Article ID: 105671.
https://doi.org/10.1016/j.lithos.2020.105671
[32]  Eggins, S.M. (2003) Laser Ablation ICP-MS Analysis of Geological Materials Prepared as Lithium Borate Glasses. Geostandard Newsletter, 27, 147-162.
https://doi.org/10.1111/j.1751-908X.2003.tb00642.x
[33]  Janousek, V., Farrow, C.M. and Erban, V. (2006) Interpretation of Whole-Rock Geo-Chemical Data in Igneous Geochemistry: Introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47, 1255-1259.
https://doi.org/10.1093/petrology/egl013
[34]  Irvine, T.N. and Baragar, W.R.A. (1971) A Guide to the Chemical Classification of the Common Volcanic Rocks. The Canadian Journal of Earth Sciences, 8, 523-548.
https://doi.org/10.1139/e71-055
[35]  Miyashiro, A. (1974) Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274, 321-355.
https://doi.org/10.2475/ajs.274.4.321
[36]  Maniar, P.D. and Piccoli, P.M. (1989) Tectonic Discrimination of Granitoids. GSA Bulletin, 101, 635-643.
https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[37]  Mullen, E.D. (1983) MnO/TiO2/P2O5: A Minor Element Discriminant for Basaltic Rocks of Oceanic Environments and Its Implications for Petrogenesis. Earth and Planetary Science Letters, 62, 53-62.
https://doi.org/10.1016/0012-821X(83)90070-5
[38]  Sun, S.-S. and McDonough, W.F. (1989) Chemical and Isotopic Systematics of Oceanic Bas Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42, 313-345.
https://doi.org/10.1144/GSL.SP.1989.042.01.19
[39]  Boynton, W.V. (1984) Chapter 3. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., Ed., Developments in Geochemistry, Vol. 2, Elsevier, Amsterdam, 63-114.
https://doi.org/10.1016/B978-0-444-42148-7.50008-3
[40]  Anum, S., Sakyi, P.A., Su, B., Nude, P.M., Nyame, F., Asiedu, D. and Kwayisi, D. (2015) Geochemistry and Geochronology of Granitoids in the Kibi-Asamankese Area of the Kibi-Winneba Volcanic Belt, Southern Ghana. Journal of African Earth Sciences, 102, 166-179.
https://doi.org/10.1016/j.jafrearsci.2014.11.007
[41]  Koffi, A.Y., Kouamelan, A.N., Djro, S.C., Kouadio, F.J.-L.H., Teha, K.R., Kouassi, B.R. and Koffi, G.R.S. (2018) Pétrographie et origine des métasédiments du domaine SASCA (SW de la Cote d’lvoire). International Journal of Innovation and Applied Studies, 23, 451-464.
[42]  Labou, I., Benoit, M., Baratoux, L., Grégoire, M., Ndiaye, M.P., Thebaud, N. and Debat, P. (2020) Petrological and Geochemical Study of Birimian Ultramafic Rocks within the West African Craton: Insights from Mako (Senegal) and Loraboué (Burkina Faso) Lher-Zolite/Harzburgite/Wehrlite Associations. Journal of African Earth Sciences, 162, Article ID: 103677.
https://doi.org/10.1016/j.jafrearsci.2019.103677
[43]  Wang, J., Wang, X., Liu, J., Liu, Z., Zhai, D. and Wang, Y. (2019) Geology, Geochemistry, and Geochronology of Gabbro from the Haoyaoerhudong Gold Deposit, Northern Margin of the North China Craton. Minerals, 9, Article No. 1.
https://doi.org/10.3390/min9010063
[44]  Gómez-Pugnaire, M.T., Azor, A., Fernández-Soler, J.M. and López Sánchez-Vizcaino, V. (2003) The Amphibolites from the Ossa-Morena/Central Iberian Variscan Suture (Southwestern Iberian Massif): Geochemistry and Tectonic Interpretation. Lithos, 68, 23-42.
https://doi.org/10.1016/S0024-4937(03)00018-5
[45]  Winchester, J.A. and Max, M.D. (1982) The Geochemistry and Origins of the Precambrian Rocks of the Rosslare Complex, SE Ireland. Journal of the Geological Society, 139, 309-319.
https://doi.org/10.1144/gsjgs.139.3.0309
[46]  Pouclet, A., Vidal, M., Delor, C., Simeon, Y. and Alric, G. (1996) Le volcanisme birimien du nord-est de la Cote-d’Ivoire, mise en evidence de deux phases volcano-tectoniques distinctes dans l’evolution geodynamique du Paleoproterozoique. Bulletin de la Société Géologique de France, 167, 529-541.
[47]  Saccani, E. (2015) A New Method of Discriminating Different Types of Post-Archean Ophiolitic Basalts and Their Tectonic Significance Using Th-Nb and Ce-Dy-Yb Systematics. Geoscience Frontiers, 6, 481-501.
https://doi.org/10.1016/j.gsf.2014.03.006
[48]  Floyd, P.A. and Winchester, J.A. (1975) Magma Type and Tectonic Setting Discrimination Using Immobile Elements. Earth and Planetary Science Letters, 27, 211-218.
https://doi.org/10.1016/0012-821X(75)90031-X
[49]  Sajona, F.G., Maury, R.C., Bellon, H., Cotten, J. and Defant, M. (1996) High Field Strength Element Enrichment of Pliocene-Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, 37, 693-726.
https://doi.org/10.1093/petrology/37.3.693
[50]  Wane, O., Liégeois, J.-P., Thébaud, N., Miller, J., Metelka, V. and Jessell, M. (2018) The Onset of the Eburnean Collision with the Kenema-Man Craton Evidenced by Plutonic and Volcanosedi-Mentary Rock Record of the Masssigui Region, Southern Mali. Precambrian Research, 305, 444-478.
https://doi.org/10.1016/j.precamres.2017.11.008
[51]  Lompo, M. (2010) Paleoproterozoic Structural Evolution of the Man-Leo Shield (West Africa). Key Structures for Vertical to Transcurrent Tectonics. Journal of African Earth Sciences, 58, 19-36.
https://doi.org/10.1016/j.jafrearsci.2010.01.005
[52]  Lompo, M. (2009) Geodynamic Evolution of the 2.25-2.0 Ga Palaeoproterozoic Magmatic Rocks in the Man-Leo Shield of the West African Craton. A Model of Subsidence of an Oceanic Plateau. Geological Society, London, Special Publications, 323, 231-254.
https://doi.org/10.1144/SP323.11
[53]  Smithies, R.H., Lu, Y., Johnson, T.E., Kirkland, C.L., Cassidy, K.F., Champion, D.C. and Poujol, M. (2019) No Evidence for High-Pressure Melting of Earth’s Crust in the Archean. Nature Communications, 10, Article No. 1.
https://doi.org/10.1038/s41467-019-13547-x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133