全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Permian-Triassic Transitional Zone: Jordan, Arabian Plate; Linked to Siberian Large Igneous Province and Neo-Tethys Breakup Degassing via Climate Forcing, Atmospheric Hazard and Metal Toxicity

DOI: 10.4236/ojg.2022.126023, PP. 472-503

Keywords: P-T Transition Zone, Jordan, Arabian Plate, Siliciclastics, Flash Flood Deposits, Neo-Tethys Transgression, Siberian LIP Degassing: Acid Rain, Tuffs, Metal Toxcicity, Climate Forcing, Milankovitch Croll Cycles, Germanic Basin (Correlation), Earth/Moon Interplay, Self-Regulation (Autopoiesis)

Full-Text   Cite this paper   Add to My Lib

Abstract:

End-Permian Gondwana siliciclastics (50 - 70 m) of the Um Irna F exposed along the NE Dead Sea, exhibit carbonate-free fining upward cycles (FUC) deposited during acid flash flood events under tropical climate. Several ferruginous paleosol intercalations cover periods of drying upward formation (DUP) under semiarid/arid climates. Thin grey pelite beds interbedded between paleosol and overlying FUC, are interpreted as tephra deposits sourced in Siberian LIP- and Neo-Tethys (NT)-Degassing. The Wadi Bassat en Nimra-section exhibits the P-T transitional zone where flash flood deposits meet supra-/intertidal sediments of the southward-directed transgressive NT. Decreasing flash-flooding continued through the Lower Scythian (Ma’in F.) during transgression, reworking, and resedimentation. Two euryhaline foraminifera-bearing limestone beds are discussed as indicators for the end of mass extinction (recovery phase: ca. 250.8 - 250.4 Ma) possibly correlating with the Maximum Flooding Surface MFS Tr 10 (ca. 250.5 Ma) on the Arabian Shelf (Khuff cycles B; A). Comparable data from the Germanic Basin as FUC/DUP-cycles, tephrasuspicious “Grey Beds” with high concentrations of As, Co, Pb, Zn, and Cu as well as the U-Pb Age data of the Siberian LIP meet the PTB-Zone between the MFSs Intervals P 40 (ca. 254 Ma)/Tr 10 (ca 250.5 Ma) on the Arabian Shelf. MFS (Tr 10, 20, 30) and SBs resp. on the Arabian Plate, as well as Scythian Substage boundaries correlate with 13 C-excursions recorded at Musandam, UAE. Thereby, the ratio of greenhouse gases (+climate forcing)/aerosols und tephra (-climate forcing) takes a significant influence on the 13C-Variation.

References

[1]  Walter Jens, W. (1987) Das A und das O. Die Offenbarung des Johannes. Radius Verlag, Stuttgart, 93 p.
[2]  Tollmann, A. and Tollmann, E. (1993) Und die Sintflut gab es doch. Vom Mythos zur historischen Wahrheit, München, 560 p.
[3]  Koch, H.P. (2000) The Diluvian Impact. P. Lange, Europ. Verlag der Wissensch, New York, Wien, 274 p.
[4]  Schneider, W. and Salameh, E. (2012) Did Major Impacts Affect Sedimentologic/ Sequence-Analytical Patterns of the Early Palaeozoic Sedimentary Systems of Jordan, Arabian Plate? Open Journal of Geology, 2, 241-252.
https://doi.org/10.4236/ojg.2012.24024
[5]  Schneider, W. and Salameh, E. (2020) Phanerozoic Quartz Arenite Formation and Sequence Analytical Patterns: Indirectly Relating to Major Impacting and Super Plume Volcanism, Jordan, Arabian Plate. Open Journal of Geology, 10, 13-52.
https://doi.org/10.4236/ojg.2020.101002
[6]  Schneider, W. and Salameh, E. (2020) End-Cretaceous Quartz Arenite Formation in an Estuarian Environment under Brine Influence, N. Germany; Linked to both Deccan Volcanism and Chicxulub Impact Degassing during Climate Change. Open Journal of Geology, 10, 1091-1118.
https://doi.org/10.4236/ojg.2020.1011053
[7]  Schneider, W. and Salameh, E. (2018) How to Trace out Impact-Triggered Effects Globally Scattered around Formation Boundaries: Case Uhry, North Germany (Eocene / Oligocene Boundary). Open Journal of Geology, 8, 9-32.
https://doi.org/10.4236/ojg.2018.81002
[8]  Price, N.J. (2001) Major Impacts and Plate Tectonics. Routledge, London, 354 p.
https://doi.org/10.1201/9780203165454
[9]  Frisch, W. and Meschede, M. (2009) Plattentektonik. Kontinentverschiebung und Gebirgsbildung, 3. Auflage, Primus Verlag, Darmstadt, 196 p.
[10]  Peterson, S.V., Dutton, A. and Lohman, K.C. (2016) End-Cretaceous Extinction in Antarctica Linked to Both Deccan Volcanism and Meteoritic Impact via Climate Change. Nature Communications, 7, Article No. 12079.
https://doi.org/10.1038/ncomms12079
[11]  Henehan, M.J., Ridgwell, A., Thomas, E., Zhang, S., Alegret, L., Schmidt, J.R., Planavsky, N.J. and Hull, P.M. (2019) Rapid Ocean Acidification and Protracted Earth System Recovery Followed the End-Cretaceous Chicxulub Impact. Proceedings of the National Academy of Sciences of the United States of America, 116, 22500-22504.
https://doi.org/10.1073/pnas.1905989116
[12]  Powell, J.H., Stephenson, M.H., Nicora, A., Rettori, R., Borlenghi, L.M. and Cristina Perri, M.C. (2016) The Permian-Triassic Boundary, Dead Sea, Jordan: Transitional Alluvial to Marine Depositional Sequences and Biostratigraphy. Rivista Italiana di Paleontologia e Stratigrafia, 122, 23-40.
[13]  Ziegler, M.A. (2001) Late Permian to Holocene Paleofacies Evolution of the Arabian Plate and its Hydrocarbon Occurrences. GeoArabia, 6, 445-504.
https://doi.org/10.2113/geoarabia0603445
[14]  Sharland, P.R., Casey, D.M., Davies, R.B., Simmons, M.D. and Sut-Cliffe, O.E. (2004) Arabian Plate Sequence Stratigraphy—Revisions to SP2. GeoArabia, 9, 199-214.
https://doi.org/10.2113/geoarabia0901199
[15]  Haq, B.U. and Al-Qahtani, A.M (2005) Phanerozoic Cycles of Sea-Level Change on the Arabian Platform. GeoArabia, 10, 127-160.
https://doi.org/10.2113/geoarabia1002127
[16]  Bandel, K. and Khoury, H. (1981) Lithostratigraphy of the Triassic in Jordan. Facies, 4, 1-26.
https://doi.org/10.1007/BF02536584
[17]  Makhlouf, I.M., Turner, B.R. and Abed, A.M. (1991) Depositional Facies and Environments in the Permian Umm Irna Formation, Dead Sea Area, Jordan. Sedimentary Geology, 73, 117-139.
https://doi.org/10.1016/0037-0738(91)90026-A
[18]  Stephenson, M.H. and Powell, J.H. (2013) Palynology and Alluvial Architecture in the Permian Umm Irna Formation, Dead Sea, Jordan. GeoArabia, 18, 17-60.
https://doi.org/10.2113/geoarabia180317
[19]  Stampfli, G.M. and Borel, G. (2002) A Plate Tectonic Model for the Palaeozoic and Mesozoic Constrained by Dynamic Plate Boundaries and Restored Synthetic Oceanic Iso-Chrones. Earth and Planetary Science Letters, 196, 17-33.
https://doi.org/10.1016/S0012-821X(01)00588-X
[20]  Abu Hamad, A. (2004) Palaeobotany and Palynostratigraphy of the Permo-Triassic in Jordan. PhD Thesis, University of Hamburg, Hamburg, 330 p.
[21]  Kerp, H., Abu Hamad, A., Vording, B. and Bandel, K. (2006) Typical Triassic GondwanaFloral Elements in the Upper Permian of the Paleotropics. Geology, 34, 265-268.
https://doi.org/10.1130/G22187.1
[22]  Stephenson, M.H. and Powell, J.H. (2014) Selected Spores and Pollen from the Permian Umm Irna Formation, Jordan, and their Stratigraphic Utility in the Middle East and North Africa. Rivista Italiana di Paleontologia e Stratigrafia, 120, 145-156.
[23]  Bandel, K. and Waksmundski, B. (1985) Triassic Conodonts from Jordan. Acta Palaeontologica Polonica, 35, 289-304.
[24]  Sadeddin, W. (1998) ConodontBiostratigraphy and Paleogeography of the Triassic in Jordan. Palaeontographica Abteilung A, 248, 119-144.
https://doi.org/10.1127/pala/248/1998/119
[25]  Powell, J.H. and Molid, B.K. (1993) Structure and Sedimentation of Permo-Triassic Rocks Exposed in Small-Scale Horsts and Grabens of Pre-Cretaceous Age, Dead Sea Margin. Journal of African Earth Sciences (and the Middle East), 17, 131-143.
https://doi.org/10.1016/0899-5362(93)90031-K
[26]  Augland, L.E., Ryabov, V.V., Vernikovsky, V.A., Planke, S., Polozov, A.G., Callegaro, S., et al. (2019) The Main Pulse of the Siberian Traps Expanded in Size and Composition. Scientific Reports, 9, Article No. 18723.
https://doi.org/10.1038/s41598-019-54023-2
[27]  Miall, D. (1996) The Geology of Fluvial Deposits. Springer-Verlag, Berlin, Heidelberg, New York, 582 p.
[28]  Amireh, B.S. (1987) Sedimentological and Petrological Interplays of the Nubian Series in Jordan with Regard to Paleogeography and Diagenesis. Doctoral Dissertation, Technische Universitat Carolo Wilhelmina zu Braunschweig, Geology-Paleontology Dissertation, 7, 232 p., 33 Fig., 6 Tables, 16 Plates.
[29]  Stow, D.A.V. (1986) Deep Clastic Seas. In: Reading, H.S., Ed., Sedimentary Environments and Facies, 2nd Edition, Blackwell Science Inc Publisher, Oxford, 399-444.
[30]  Schneider, W., Abed, A. and Salameh, E. (1984) Mineral Content and Diagenetic Patterns—Useful Tools for Lithostratigraphic Subdivisions and Correlation of the Nubian Series: Results of Work in the Wadi Zerqa-Ma’in Area. Schweizerbart’sche Verlagsbuchhandlung. Geol. Jb. B 53, B3, 55-75.
[31]  Uhl, D., Abu Hamad, A., Kerp, H. and Bandel, K. (2007) Evidence for Palaeo-Wildfire in the Permian Palaeotropics—CharcoalifiedWood from the Um Irna Formation of Jordan. Review of Palaeobotany and Palynology, 144, 221-230.
https://doi.org/10.1016/j.revpalbo.2006.08.003
[32]  Ziegler, P.A. (1990) Geological Atlas of Western and Central Europe. Shell International Petroleum Maatsch. B. V., Hague, 239 p.
[33]  Hug, N. and Gaupp, R. (2006) PalaeogeographicReconstruction in Red beds by Means of Genetically Related Correlation: Resultsfrom the Upper Zechstein (Late Permian). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 157, 107-120.
https://doi.org/10.1127/1860-1804/2006/0157-0107
[34]  Hiete, M., Berner, U., Heunisch, C. and Rohling, H.G. (2006) A High-resolution Inorganic Geochemical Profile across the Zechstein-BuntsandsteinBoundary in the North German Basin. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 157, 77-105.
https://doi.org/10.1127/1860-1804/2006/0157-0077
[35]  German Stratigraphic Commission (Ed.) (2002) Stratigraphic Table of Germany, Explanation. German Stratigraphic Commission, Potsdam, 16 p.
[36]  Best, G. (1989) Die Grenze Zechstein/Buntsandstein in NW-Deutschland nach Bohrlochmessungen. Zeitschrift der Deutschen Geologischen Gesellschaft, 140, 73-85.
https://doi.org/10.1127/zdgg/140/1989/73
[37]  Li, M., Ogg, J., Zhang, Y., Huang, C., Hinnov, L., Chen, Z.-Q. and Zou Z. (2016) Astronomical Tuning of the End-Permian Extinction and the Early Triassic Epoch of South China and Germany. Earth and Planetary Science Letters, 441, 10-25.
https://doi.org/10.1016/j.epsl.2016.02.017
[38]  Burgess, N. and Skurlies, M. (2006) Kontenentale Perm-TriasGrenze und BuntsandsteinNordlich von Halle (Saale). Fazies, Biologie, Zyklen und Magnetostratigraphie (Exkursion M am 22. April 2006). Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, 88, 427-452.
https://doi.org/10.1127/jmogv/88/2006/427
[39]  Burgess, S.D., Bowring, S. and Shen, S.Z. (2014) High-precision Timeline for Earth’s Most Severe Extinction. Proceedings of the National Academy of Sciences of the United States of America, 111, Article ID: 201317692.
https://doi.org/10.1073/pnas.1317692111
[40]  Clarkson, M.O., Richozb, S., Wood, R.A., Maurer, F.W., Krystyn, L., McGurty, D.J. and Astratti, D. (2013) A New High-Resolution δ13C Record for the Early Triassic: Insights from the Arabian Platform. Gondwana Research, 24, 233-242.
https://doi.org/10.1016/j.gr.2012.10.002
[41]  Reichow, M.K., Malcolm, P., Al’Mukhamedov, A.J., Allen, M.B., Andreichev, V.L., Buslov, M.M., et al. (2009) The Timing and Extent of the Eruption of the Siberian Traps Large Igneous Province: Implications for the End-Permian Environmental Crisis. Earth and Planetary Science Letters, 277, 9-20.
https://doi.org/10.1016/j.epsl.2008.09.030
[42]  Burgess, S.D. and Bowring, S.A. (2015) High-precision Geochronology Confirms Voluminous Magmatismbefore, during, and after Earth’s Most Severe Extinction. Science Advances, 1, e1500470.
https://doi.org/10.1126/sciadv.1500470
[43]  Galfetti, T., Bucher, H., Ovtcharova, M., Schaltegger, U., Brayard, A., Brühwiler, T., et al. (2007) Timing of the Early Triassic Carbon Cycle Perturbations Inferred from New U-Pb Ages and Ammonoid Biochronozones. Earth and Planetary Science Letters, 258, 593-604.
https://doi.org/10.1016/j.epsl.2007.04.023
[44]  Ovtcharova, M., Bucher, H., Schaltegger, U., Galfetti, T., Brayard, A. and Guexet, J. (2006) New Early to Middle Triassic U-Pb Ages from South China: Calibration with AmmonoidBiochronozones and Implications for the Timing of the Triassic Biotic Recovery. Earth and Planetary Science Letters, 243, 463-475.
https://doi.org/10.1016/j.epsl.2006.01.042
[45]  Svensen, H., Planke, S., Polozov, A.G., Schmidbauer, N., Corfu, F., Podladchikov, Y.Y., et al. (2009) Siberian Gas Venting and the End-Permian Environmental Crisis. Earth and Planetary Science Letters, 277, 490-500.
https://doi.org/10.1016/j.epsl.2008.11.015
[46]  Gold, Th. (2001) Biosphaere der HeissenTiefe. 2 Aufl., Ed. Steinherz, Wiesbaden, 256 p.
[47]  Walderhaug, H. J., Eide, E. A., Scott, R. A., Inger, S. and Golionko, E. G. (2005) Palaeomagnetism and 40Ar/39Ar Geochronology from the South Taimyr Igneous Complex, Arctic Russia: a Middle-Late Triassic Magmatic Pulse after Siberian Flood-Basalt Volcanism. Geophysical Journal International, 163, 501-517.
https://doi.org/10.1111/j.1365-246X.2005.02741.x
[48]  Black, B.A., Elkins-Tanton, L.T., Rowe, M.C. and Peate, I.U. (2012) Magnitude and Consequences of Volatile Release from the Siberian Traps. Earth and Planetary Science Letters, 317-318, 363-373.
https://doi.org/10.1016/j.epsl.2011.12.001
[49]  Elkins-Tanton, L.T. (2015) Siberian Flood Basalts: The Earth’s Largest Extinction and Climate Change. Future Tense, 31.
[50]  Schmincke, H.U. (2000) Vulkanismus. Wissenschaftliche Buchgesellschaft Darmstadt, 264 p.
[51]  Correns, C.W. (1968) Einführung in die Mineralogie. 2 Aufl., Springer, Berlin, 458 p.
https://doi.org/10.1007/978-3-662-25929-0
[52]  Krauskopf, K.B. (1982) Introduction to Geochemistry. McGraw-Hill International, London, 617 p.
[53]  Hollemann, A.F. (1964) Lehrbuch der Anorganischen Chemie. DeGruyter & Co., Berlin, 766 p.
https://doi.org/10.1515/9783112312889
[54]  Hughes, P.N.J. and Mason, N.J. (2001) Introduction to Environmental Physics Planet Earth, Life and Climate. CRC Press, London, New York, 463 p.
https://doi.org/10.1201/9781482273069
[55]  Brink, H.-J. (2006) Do the Global Geodynamic Cycles of the PharenozoicRepresent a Feedback System of the Earth and is the Moon Involved as an Acting External Force? Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 157, 17-40.
https://doi.org/10.1127/1860-1804/2006/0157-0017
[56]  Creer, K.M. (1975) On the Tentative Correlation between Changes in the Geomagnetic Polarity Bias and Reversals Frequency and the Earth’s Rotation through Phanerozoic Time. In: Rosenberg, G.D. and Runcorn, S.K., Eds., Growth Rhythms and the History of the Earth’s Rotation, Wiley, London, 293-318.
[57]  Self, S., Schmidt, A. and Mather, T.A. (2014) Emplacement Characteristics, Time Scales, and Volcanic Gas Release Rates of Continental Flood Basalt Eruptions on Earth. In: Keller, G. and Kerr, A.C., Eds., Volcanism, Impacts, and Mass Extinctions: Causes and Effects, Vol. 505, Geological Society of America, Boulder, 319-337.
https://doi.org/10.1130/2014.2505(16)
[58]  Svensen, H.H., Jerram, D.A., Polozov, A.G., Planke, S., Neal, C.R., Augland, L.E., et al. (2019) Thinking about LIPs: A Brief History of Ideas in Large Igneous Province Research. Tectonophysics, 760, 229-251.
https://doi.org/10.1016/j.tecto.2018.12.008
[59]  Svensen, H.H., Torsvik, T.H., Callegaro, S., Augland, L., Heimdal, T.H., Jerram, D.A., et al. (2018) Gondwana Large Igneous Provinces: Plate Reconstructions, Volcanic Basins and Sill Volumes. In: Sensarma, S. and Storey, B.C., Eds., Large Igneous Provinces from Gondwana and Adjacent Regions, Vol. 463, Geological Society of London, London, 17-40.
https://doi.org/10.1144/SP463.7
[60]  Abdelmalak, M.M., Planke, S., Polteau, S., Hartz, E.H., Faleide, J.I., Tegner, C., et al. (2018) Break-Up Volcanism and Plate Tectonicscin the NW Atlantic. Tectonophysics, 760, 267-296.
https://doi.org/10.1016/j.tecto.2018.08.002
[61]  Maturana, H.R. and Varela, F.J. (1984) Der Raum der Erkenntnis. Die Biologischen Wurzeln des Menschlichen Erkenntnis. Goldmann G. 1490/11460, Scherz Verlag, München, 280 p.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133