We review the concept of congruence of null geodesics, the Raychaudhuri equation for the expansion, its harmonic oscillator version and associated “quantum” propagator, the role of the equation in the derivation of the Penrose singularity theorem, the definition of trapped surfaces, and the derivation of the theorem itself.
References
[1]
Penrose, R. (1965) Gravitational Collapse and Space-Time Singularities. Physical Review Letters, 14, 57-59. https://doi.org/10.1103/PhysRevLett.14.57
[2]
Raychaudhuri, A. (1955) Relativistic Cosmology I. Physical Review, 98, 1123-1126. https://doi.org/10.1103/PhysRev.98.1123
[3]
Hawking, S.W. and Ellis, G.F.R. (1973) The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511524646
[4]
Joshi, P.S. (1993) Global Aspects in Gravitation and Cosmology. Clarendon Press, Oxford.
[5]
Godinho, L. and Natário, J. (2014) An Introduction to Riemannian Geometry: With Applications to Mechanics and Relativity (Universitext). Springer, Berlin. https://doi.org/10.1007/978-3-319-08666-8
[6]
Galloway, G.J. (2014) Notes on Lorentzian Causality. ESI-EMS-IAMP Summer School on Mathematical Relativity, Vienna.
[7]
Witten, E. (2020) Light Rays, Singularities, and All That. Reviews of Modern Physics, 92, Article ID: 045004. https://doi.org/10.1103/RevModPhys.92.045004
[8]
Senovilla, J.M.M. (1998) Singularity Theorems and Their Consequences. General Relativity and Gravitation, 30, 701-848. https://doi.org/10.1023/A:1018801101244
[9]
Senovilla, J.M.M. (2015) The 1965 Penrose Singularity Theorem. Classical and Quantum Gravity, 32, Article ID: 124008. https://doi.org/10.1088/0264-9381/32/12/124008
[10]
Hawking, S.W. (1965) Occurrence of Singularities in Open Universes. Physical Review Letters, 15, 689-690. https://doi.org/101103/PhysRevLett.15.689
[11]
Hawking, S.W. and Penrose, R. (1970) The Singularities of Gravitational Collapse and Cosmology. Proceedings of the Royal Society of London. Series A, 314, 529-548. https://doi.org/10.1098/rspa.1970.0021
[12]
álvarez, E. (2021) Windows on Quantum Gravity. Fortschritte der Physik, 69, Article ID: 2000080. https://doi.org/10.1002/prop.202000080
[13]
Modesto, L. (2004) Disappearance of the Black Hole Singularity in Loop Quantum Gravity. Physical Review D, 70, Article ID: 124009. https://doi.org/10.1103/PhysRevD.70.124009
[14]
Wall, A.C. (2013) The Generalized Second Law Implies a Quantum Singularity Theorem. Classical and Quantum Gravity, 30, Article ID: 165003. https://doi.org/10.1088/0264-9381/30/16/165003
[15]
Poisson, E. (2004) A Relativist’s Toolkit: The Mathematics of Black Hole Mechanics. Cambridge University Press, Cambridge.
[16]
Socolovsky, M. (2021) Quantum Propagators for Geodesic Congruences. Theoretical Physics, 6, 9-17.
[17]
Wald, R.M. (1984) General Relativity. The University of Chicago Press, Chicago. https://doi.org/10.7208/chicago/9780226870373.001.0001
[18]
Kar, S. and Sengupta, S. (2007) The Raychaudhuri Equations: A Brief Review. Pramana, 69, 49-76. https://doi.org/10.1007/s12043-007-110-9
[19]
Tipler, F.J. (1978) General Relativity and Conjugate Ordinary Differential Equations. Journal of Differential Equations, 30, 165-174. https://doi.org/10.1016/0022-0396(78)90012-8
[20]
Teschl, G. (2012) Ordinary Differential Equations and Dynamical Systems. American Mathematical Society, Providence. https://doi.org/10.1090/gsm/140
[21]
Feynman, R.P. and Hibbs, A.R. (1965) Quantum Mechanics and Path Integrals. McGraw-Hill, New York.
[22]
Schulman, L.S. (1981) Techniques and Applications of Path Integration. Wiley, New York. https://doi.org/10.1063/1.2914703
[23]
Amstrong, M.A. (1983) Basic Topology, Undergraduate Texts in Mathematics. Springer, Berlin. https://doi.org/10.1007/978-1-4757-1793-8.