This work was undertaken to see how Ru II complexes can be suitable for photodynamic therapy through theoretical prediction. For that, four Ru II complexes, α-RuCl2(Azpy)2, , ?and ?were used in unrestricted state by providing with no more energy than 2.68 eV. The unrestricted state allows the complex molecule to display each of its electrons in one orbital. All the calculations such as optimization, frequency and TD-DFT calculations were performed at WB97XD/Lanl2dz level. It resulted from this investigation that Ru II complexes are active for both mechanisms suitable for photodynamic therapy in presence or absence of 3O2. Moreover, this reaction was assumed to take place only with Guanine DNA base as demonstrated in literature. Therefore, Guanine is admitted as the base most reacting with ruthenium complexes for photodynamic therapy. This work confirms our prediction regarding metallic complexes that are assumed to be photosensitized in condition that an electron must be isolated to favor the excitation. Nevertheless, Ru II complexes are found suitable for superficial therapy while Ru III must be active for deep therapy.
References
[1]
Velders, A.H., Kooijman, H., Spek, A.L., Haasnoot, J.G., De Vos, D. and Reedijk, J. (2000) Strong Differences in the Vitro Cytotoxicity of Three Isomeric Dichlorobis (2-Phenylazopyridine) Ruthenium (II) Complexes. Inorganic Chemistry, 39, 2966.
https://doi.org/10.1021/ic000167t
[2]
Notaro, A. and Gasser, G. (2017) Monomeric and Dimeric Coordinatively Saturated and Substitutionally Inert Ru(II) Polypyridyl Complexes as Anticancer Drug Candidates. Chemical Society Reviews, 46, 7317-7337.
https://doi.org/10.1039/C7CS00356K
[3]
Nobel, N.K., Bamba, K., Patrice, O.W. and Ziao, N. (2017) NBO Population Analysis and Electronic Calculation of Four Azopyridine Complexes by DFT Method. Computational Chemistry, 5, 51-64. https://doi.org/10.4236/cc.2017.51005
[4]
Sava, G., Bergamo, A., Zorzet, S., Gava, B., Casarsa, C., Cocchietto, M., Furlani, A., Scarcia, V., Serli, B., Iengo, E., Alessio, E. and Mestroni, G. (2002) Influence of Chemical Stability on the Activity of the Antimetastasis Ruthenium Compound NAMI-A. European Journal of Cancer, 38, 427-435.
https://doi.org/10.1016/S0959-8049(01)00389-6
[5]
Bamba, K., Ouattara, W.P., Diarrassouba, F., Ouattara, L., Massapihanhoro, P.O., N’guessan, K.N., Ehouman, A.D. and Ziao, N. (2021) Theoretical Determination of Influence of the Metallic State of Oxidation toward Cytotoxic Activity: Case of Ruthenium Complexes. Computational Chemistry, 9, 97-119.
https://doi.org/10.4236/cc.2021.92006
[6]
Harriman, A. (1995) CRC Handbook of Photochemistry and Photobiology. CRC Press, Boca Raton.
[7]
Ouattara, W.P. (2021) Evaluation théorique de l’impact de la substitution des métaux de transition et des ligands sur les propriétés anticancéreuses, photodynamiques et de fluorescence des complexes azopyridines. Thèse de doctorat, Université Nangui Abrogoua, p. 98.
[8]
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J. and Fox, D.J. (2009) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT, USA.
[9]
Mazzone, G., Alberta, M.E., De Simone, B.C., Marino, T. and Russo, N. (2016) Can Expanded Bacterioclorins Act as Photosensitizers in Photodynamic Therapy? Good News from Density Functional Theory Computations. Molecules, 21, 288.
https://doi.org/10.3390/molecules21030288
[10]
Erikson, E.S.E. and Erikson, L.A. (2011) Predictive Power of Long-Range Corrected Functionals on the Spectroscopic Properties of Tetrapyrrole Derivatives for Photodynamic Therapy. Physical Chemistry Chemical Physics, 13, 7207-7217.
https://doi.org/10.1039/c0cp02792h
[11]
Bamba, K., Ouattara, W.P., N’Guessan, K.N. and Ziao, N. (2016) SARs Investigation of α-, β-, γ-, δ-, ε -RuCl2(Azpy)2 Complexes as Antitumor Drugs. Computational Chemistry, 4, 1-10. https://doi.org/10.4236/cc.2016.41001
[12]
N’guessan, K.N., Guy-Richard Koné, M., Bamba, K., Ouattara, W.P. and Ziao, N. (2017) Quantitative Structure Anti-Cancer Activity Relationship (QSAR) of a Series of Ruthenium Complex Azopyridine by the Density Functional Theory (DFT) Method. Computational Molecular Bioscience, 7, 19-31.
https://doi.org/10.4236/cmb.2017.72002
[13]
Foresman, J.B. and Frisch, A. (1996) Exploiting Chemistry with Electronic Structure Methods. In: Thermochemistry, 2nd Edition, Gaussian, Inc., Pittsburgh, PA, p. 53.
[14]
Liu, J., Zhao, Y.W., Zhao, J., Q., Xia A. D., Jiang L. J., Wu, S., Ma L. Dong Y. Q. Gu Y. H., (2002) Two Photon Excitation Studies of Hypocrellins for Photodynamic Therapy. The Journal of Photochemistry and Photobiology B: Biology, 68, 156.
https://doi.org/10.1016/S1011-1344(02)00379-2
[15]
Zhao, X., Zheng, Z.B., Feng, S., Shi, Z.Q. and Chen, D.Z. (2009) A TD-DFT Study on the Photo-Physicochemical Properties of Chrisophanol from Rheum. International Journal of Molecular Sciences, 10, 3186-3193.
https://doi.org/10.3390/ijms10073186
[16]
Gould, J.W., Mercurio, M.G. and Elmets, C.A. (1995) Cutaneous Photosensitivity Diseases Induced by Exogenous Agents. Journal of the American Academy of Dermatology, 33, 551-573. https://doi.org/10.1016/0190-9622(95)91271-1
[17]
Wu, W.T., Shao, X.D., Zhao, J.Z. and Wu, M.B. (2017) Controllable Photodynamic Therapy Implemented by Regulating Singlet Oxygen Efficiency. Advanced Science, 4, Article ID: 1700113. https://doi.org/10.1002/advs.201700113
[18]
Allardyce, C.S. and Dyson, P.J. (2001) Ruthenium in Medicine: Current Clinical Uses and Future Prospects. Platinum Metals Review, 45, 62-69.
[19]
Ouattara, W.P., Bamba, K., Thomas, A.S., Diarrassouba, F., Ouattara, L., Massapihanhoro, P.O., N’guessan, K.N., Guy Richard, K.M., Kodjo, C.G. and Ziao, N. (2021) Theoretical Studies of Photodynamic Therapy Properties of Azopyridine δ-OsCl2 (Azpy)2 Complex as a Photosensitizer by a TDDFT Method. Computational Chemistry, 9, 64-84. https://doi.org/10.4236/cc.2021.91004
[20]
Rita, C.G. and Leif, A.E. (2005) Theoretical Study of Hypericin. Journal of Photochemistry and Photobiology A: Chemistry, 172, 293-299.
https://doi.org/10.1016/j.jphotochem.2004.12.025
[21]
Llano, J., Raber, J. and Eriksson, L.A. (2003) Theoretical Study of Phototoxic Reactions of Psoralens. Journal of Photochemistry and Photobiology A: Chemistry, 154, 235-243. https://doi.org/10.1016/S1010-6030(02)00351-9
[22]
Sousa, F.F.R., Quartarolo, A.D., Sicilia, E. and Russo, N. (2012) A Time-Dependent Density Functional Study of a Non-Aromatic [1.1.1.1.1]-Pentaphyrin and Its Lutetium Complex. The Journal of Physical Chemistry B, 116, 10816-10823.
https://doi.org/10.1021/jp3068359
[23]
Musa, K.A.K., Matxain, J.M. and Eriksson, L.A. (2007) Mechanism of Photoinduced Decomposition of Ketoprofen. Journal of Medicinal Chemistry, 50, 1735-1743.
https://doi.org/10.1021/jm060697k