全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Table Auto-Regressive Moving-Average Model for (Categorical) Stationary Series: Mathematical Perspectives (Invertibility; Maximum Likelihood Estimation)

DOI: 10.4236/ojs.2022.123025, PP. 385-407

Keywords: Asymptotic Normality, Consistency, Scores Efficiency, Strict Stationarity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Once invertibility for a causal TARMA series is defined and accompanied by conditions on the probability parameters of the model, all focus concentrates on the maximum likelihood estimators. Under the coexistence of essential causality and invertibility, the estimators are shown to be convergent to the real values and asymptotically obedient to the Gaussian distribution: their variance matrix identifies with a classic result. Some real-like examples are simulated and simplification attempts include the derivation of the non-parametric chi-square test extension for stationary TAR series.

References

[1]  Dimitriou-Fakalou, C. (2019) The Table Auto-Regressive Moving-Average Model for (Categorical) Stationary Series: Statistical Properties (Causality; from the All Random to the Conditional Random). Journal of Nonparametric Statistics, 31, 31-63.
https://doi.org/10.1080/10485252.2018.1527912
[2]  Jacobs, P.A. and Lewis, A.W. (1978) Discrete Time Series Generated by Mixtures II: Asymptotic Properties. Journal of the Royal Statistical Society: Series B, 40, 222-228.
https://doi.org/10.1111/j.2517-6161.1978.tb01667.x
[3]  Möller, T.A. and Wei, C.H. (2020) Generalized Discrete Autoregressive Moving-Average Models. Applied Stochastic Models in Business and Industry, 36, 641-659.
https://doi.org/10.1002/asmb.2520
[4]  Lomnicki, Z.A. and Zaremba, S.K. (1955) Some Applications of Zero-One Processes. Journal of the Royal Statistical Society: Series B, 17, 243-255.
https://doi.org/10.1111/j.2517-6161.1955.tb00198.x
[5]  Joe, H. (1996) Time Series Models with Univariate Margins in the Convolution-Closed Infinitely Divisible Class. Journal of Applied Probability, 33, 664-677.
https://doi.org/10.1017/S0021900200100105
[6]  Kedem, B. (1980) Estimation of the Parameters in Stationary Autoregressive Processes after Hard Limiting. Journal of the American Statistical Association, 75, 146-153.
https://doi.org/10.1080/01621459.1980.10477445
[7]  Azzalini, A. (1983) Maximum Likelihood Estimation of Order m for Stationary Stochastic Processes. Biometrika, 70, 381-387.
https://doi.org/10.1093/biomet/70.2.381
[8]  Hannan, E.J. (1973) The Asymptotic Theory of Linear Time Series Models. Journal of Applied Probability, 10, 130-145.
https://doi.org/10.1017/S0021900200042145
[9]  Cui, Y. and Lund, R.B. (2009) A New Look at Time Series of Counts. Biometrika, 96, 781-792.
https://doi.org/10.1093/biomet/asp057
[10]  Roitershtein, A. and Zhong, Z. (2013) On Random Coefficient INAR(1) Processes. Science China Mathematics, 56, 177-200.
https://doi.org/10.1007/s11425-012-4547-z
[11]  Davis, R.A., Fokianos, K., Holan, S.H., Joe, H., Livsey, J., Lund, R., Pipiras, V. and Ravishanker, N. (2021) Count Time Series: A Methodological Review. Journal of the American Statistical Association, 116, 1533-1547.
https://doi.org/10.1080/01621459.2021.1904957
[12]  Anderson, T.W. and Goodman, L.A. (1957) Statistical Inference about Markov Chains. The Annals of Mathematical Statistics, 28, 89-110.
https://doi.org/10.1214/aoms/1177707039
[13]  Klotz, J. (1973) Statistical Inference in Bernoulli Trials with Dependence. The Annals of Statistics, 1, 373-379.
https://doi.org/10.1214/aos/1176342377
[14]  Box, G.E.P. and Jenkins, G.M. (1970) Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco.
[15]  Brockwell, P.J. and Davis, R.A. (1991) Time Series: Theory and Methods. 2nd Edition, Springer-Verlag, New York.
https://doi.org/10.1007/978-1-4419-0320-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133