Spatial-temporal variations of macroalgae were analyzed
in a study conducted in Cueva de Los Peces (CP) and Punta Perdiz (PP), two dive
sites located on the eastern coast of Bahía de Cochinos. The most conspicuous species
found from 3 to 20 m depths were present in the biotopes of ridges and shallow and
deep terraces. Sampling was carried out in September 2014, and March and October
2016 by autonomous diving and direct methods. Qualitative visual censuses and quantitative
analyzes were used to estimate the coverage (%) of the genera according to the AGRRA
methodology with the use of the 10 m linear transect and quadrats as the sampling
unit. The first list of macroalgae for the area
is offered that includes 49 taxa of which 10 were Rhodophyta, 10 Ochrophyta (Phaeophyceae), and 29 Chlorophyta. The dominant genera during the study
period were Halimeda, Dictyota, Lobophora, and Udotea. Spatial differences were found regarding the specific
composition. Temporal variations were evidenced in terms of the relative abundance
of the genera present, which reveals temporal changes in the qualitative structure,
where some species replace others. The information obtained is pioneering and can
serve as a comparative baseline for future monitoring of the area.
References
[1]
Caballero, H., Chevalier, P.P., Alfonso, Y., Corrada, R.I., Campos, K., Cabrera, D., Busutil, L., Noda, M., Soto, M., Fernández, A., Perera, S., Cobian, D., González-Méndez, J. and Martínez-Daranas, B. (2018) Dinámica en comunidades bénticas de arrecifes de coral sometidos a diferente grado de severidad ambiental. Programa de Biodiversidad de la Agencia Nacional de Medio Ambiente, Informe Científico-Técnico, 122 p.
[2]
Caballero, H., Chevalier, P., Varona, G., Cárdenas, A.L., Pastor, L., Pérez-Hernández, A. and García, Y. (2004) Componentes más comunes de la fauna del arrecife de coral de la costa oriental de Bahía de Cochinos, Cuba: Corales, esponjas, gorgonáceos y peces. Revista de Investigaciones Marinas, 25, 37-44.
[3]
Caballero, H., Varona, G. and García, Y. (2004) Estructura ecológica de las comunidades de corales de la costa oriental de Bahía de Cochinos, Cuba. Revista de Investigaciones Marinas, 25, 23-36.
[4]
Varona, G., Caballero, H. and de la Guardia, E. (2004) Estructura ecológica de las comunidades de octocorales en la costa oriental de Bahía de Cochinos, Cuba. Revista de Investigaciones Marinas, 25, 209-218.
[5]
Chevalier, P. and Cárdenas, A. (2005) Variación espacial y temporal de las asociaciones de peces en arrecifes costeros de la costa oriental de la Bahía de Cochinos. I: Abundancia y diversidad. Revista de Investigaciones Marinas, 26, 45-57.
[6]
Chevalier, P. and Cárdenas, A. (2005) Variación espacial y temporal de las asociaciones de peces en arrecifes costeros de la costa oriental de la Bahía de Cochinos. II: Análisis multidimensional. Revista de Investigaciones Marinas, 26, 59-66.
[7]
Caballero, H., Busutil, L., García, Y. and Alcolado, P.M. (2009) Variación espacial en comunidades de esponjas de la costa oriental de Bahía de Cochinos, Cuba. Revista Ciencias Marinas y Costeras, 1, 95-109.
[8]
Suárez, A.M., Martínez-Daranas, B. and Alfonso, Y. (2015) Macroalgas marinas de Cuba. Editorial UH, La Habana, 264 p.
[9]
Moreira, A., Armenteros, M., Gómez, M., León, A.R., Cabrera, R., Castellanos, M.E., Muñoz, A. and Suárez, A.M. (2006) Variation of Macroalgae Biomass in Cienfuegos Bay, Cuba. Revista de Investigaciones Marinas, 27, 3-12.
[10]
Cabrera, R., Díaz-Larrea, J. and Cruz-Aviña, J.R. (2022) Ecosistemas Costeros. Amenazas y explotación de recursos. Editorial Académica Española, República de Moldavía, 57 p.
[11]
Kramer, P. (2003) Synthesis of Coral Reef Health Indicators for the Western Atlantic: Results of the AGRRA Program (1997-2000). Atoll Research Bulletin, 496, 1-57.
https://doi.org/10.5479/si.00775630.496-3.1
[12]
Kramer, P., Lang, J., Marks, K.., Garza, R. and Ginsburg, R. (2005) AGRRA Methodology v. 4.0. http://coral.aoml.noaa.gov/agra/methodhome.htm
[13]
Taylor, W.R. (1960) Marine Algae of the Eastern Tropical and Subtropical Coasts of Americas. The University of Michigan Press, Michigan, 870 p.
[14]
Littler, D.S. and Littler, M.M. (2000) Caribbean Reef Plants. OffShore Graphics, Inc., Washington DC, 542 p.
[15]
Littler, D.S., Littler, M.M. and Hanisack, M.D. (2008) Submersed Plants of the Indian River Lagoon: A Floristic Inventory and field Guide. OffShore Graphics, Inc., Washington DC, 298 p.
[16]
Wynne, M.J. (2017) A Checklist of Benthic Marine Algae of the Tropical and Subtropical Western Atlantic: 4th Revision. Nova Hedwigia, Beiheft, 145, 202 p.
[17]
Guiry, M.D. and Guiry, G.M. (2022) Algae Base. World-Wide Electronic Publication. National University of Ireland, Galway. https://www.algaebase.org/
[18]
Clarke, K.R. and Warwick, R.M. (1994) Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Natural Environment Research Council, Plymouth.
[19]
Anderson, M.J., Gorley, R.N. and Clarke, K.R. (2008) PERMANOVA for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymounth, 214 p.
[20]
Manly, B.F.J. (2006) Randomization, Bootstrap and Monte Carlo Methods in Biology. 3rd Edition, Chapman and Hall, London.
[21]
Suárez, A.M., Aguilar, C. and González-Sansón, G (1989) Comparación de dos métodos para la cuantificación del fitobentos. Revista de Investigaciones Marinas, 10, 21-26.
[22]
STATSOFT, Inc. (2004) STATISTICA (Data Analysis Software System), Version 7.
http://www.statsoft.com
[23]
Clarke, K.R. and Warwick, R.M. (2001) Change in Marine Communities. An Approach to Statistical Analysis and Interpretation. 1st Edition, PRIMER-E, Plymouth.
[24]
Suárez, A.M. (1989) Ecología del macrofitobentos de la plataforma de Cuba. Revista de Investigaciones Marinas, 10, 187-206.
[25]
Alfonso, Y., Martínez-Daranas, B. and Suárez, A.M. (2017) Adición a las clorofíceas cubanas: Rhipidosiphon floridensis D. Littler et M. Littler (Udoteacea, Bryopsidales) Revista de Investigaciones Marinas, 37, 86-90.
[26]
Ballantine, D.L. and Aponte, N.E. (2002) A Checklist of the Benthic Marine Algae Known to Puerto Rico. Second Revision. Constancea, 83.
http://ucjeps.berkeley.edu/constancea/index.html
[27]
Dawes, C.J. and Mathieson, A.C. (2008) The Seaweeds of Florida. University Press of Florida, Gainesville, 591 p.
[28]
Ballantine, D.L., Norris, J.N. and Ruiz, H. (2021) The Marine Benthic Algal Flora of Puerto Rico, I. Ochrophyta: Phaeophyceae, Pelagophyceae, and Xanthophyceae. Smithsonian Contributions to Botany. https://doi.org/10.5479/si.16709413
[29]
Moreira, A., Fujii, M.T., Fernández-Garcés, R., González-Batista, M., León-Pérez, A., Martínez-Daranas, B. and Suárez, A.M. (2014) Chlorophyta bentónicas del litoral arrecifal de la provincia de Cienfuegos, Cuba. Revista de Investigaciones Marinas, 34, 9-17.
[30]
Moreira, A., Fernández-Garcés, R., Gómez-Batista, M., León-Pérez, A.R., Castellanos-González, M.E., Cabrales-Caballero, Y., García-Moya, A., Fujii, M. and Suárez, A.M. (2019) Marine Red Algae from Central-Southern Coast of Cuba. Regional Studies in Marine Science, 25, Article ID: 100450.
https://doi.org/10.1016/j.rsma.2018.100450
[31]
Cabrera, R., Díaz-Larrea, J., Umanzor, S. and Núñez García, L. (2019) Using a Macroalgal Functional Form Approach to Assess the Level of Disturbance of Seagrass Meadows in Bahía of Nuevitas, Cuba (2000-2002). American Journal of Plant Sciences, 10, 2020-2033. https://doi.org/10.4236/ajps.2019.1011142
[32]
Cabrera, R., Moreira, A. and Suárez, A.M. (2004) Variación en la composición y estructura de las asociaciones algales en la Bahía de Nuevitas, costa NE de Cuba. Revista de Investigaciones Marinas, 25, 133-142.
[33]
Trelles, J., Suárez, A.M. and de la Guardia, E. (2001) Macroalgas dominantes de Playa Herradura, plataforma noroccidental de Cuba: Caulerpales y Dictyotales. Revista de Investigaciones Marinas, 22, 1-6.
[34]
Perera-Valderrama, P., Hernández-ávila, A., Ferro-Azcona, H., Cobián-Rojas, D., González-Méndez, J., Caballero-Aragón, H., de la Guardia-Llansó, E., Ramón-Puebla, A., Hernández-González, Z., Espinosa-Pantoja, L. and Lara, A. (2020) Increasing Marine Ecosystems Conservation Linking Marine Protected Areas and Integrated Coastal Management in Southern Cuba. Ocean & Coastal Management, 196, Article ID: 105300. https://doi.org/10.1016/j.ocecoaman.2020.105300
[35]
Littler, M.M. and Littler, D.S. (1984) Relationships between Macroalgal Functional form Groups and Substrata Stability in a Subtropical Rocky-Intertidal System. Journal of Experimental Marine Biology and Ecology, 74, 13-34.
https://doi.org/10.1016/0022-0981(84)90035-2
[36]
Lapointe, B.E. (1997) Nutrient Thresholds for Bottom-Up Control of Macroalgal Blooms on Coral Reefs in Jamaica and Southeast, Florida. Limnology Oceanography, 42, 1119-1131. https://doi.org/10.4319/lo.1997.42.5_part_2.1119
[37]
Seah, J.C.L., Bauman, A.G. and Todd, P.A. (2021) Temporal Variation in Macroalgal Removal: Insights from an Impacted Equatorial Coral Reef System. Marine Biology, 168, Article No. 2. https://doi.org/10.1007/s00227-020-03806-7
[38]
Hay, M. (1997) Synchronous Spawning: When Timing Is Everything. Science, 275, 1080-1081. https://doi.org/10.1126/science.275.5303.1080
[39]
McClanahan, T.R., Cokos, B.A. and Sala, E. (2002) Algal Growth and Species Composition under Experimental Control of Herbivory, Phosphorus and Coral Abundance in Glover’s Reef, Belize. Marine Pollution Bulletin, 44, 41-451.
https://doi.org/10.1016/S0025-326X(02)00051-6
[40]
Valdivia, A. and de la Guardia, E. (2004) Variación espacio temporal de la comunidad de algas en el arrecife costero de Boca de Canasí, La Habana, Cuba. Revista de Investigaciones Marinas, 25, 123-131.
[41]
Steneck, R.S. and Dethier, M.N. (1994) A Functional Group Approach to the Structure of Algal-Dominated Communities. Oikos, 69, 476-498.
https://doi.org/10.2307/3545860
[42]
Birrell, C.L., McCook, L.J., Willis, B.L. and Diaz-Pulido, G.A. (2008) Effects of benthic algae on the Replenishment of Corals and the Implications for the Resilience of Coral Reefs. In: Hawkins, S.J., Allcock, A.L., Bates, A.E., Firth, L.B., Smith, I.P., Swearer, S.E. and Todd, P.A., Eds., Oceanography and Marine Biology, CRC Press, Boca Ratón, 31-70.
[43]
AGRRA [Atlantic and Gulf Rapid Reef Assessment] (2018) Atlantic and Gulf Rapid Reef Assessment (AGRRA): An Online Database of AGRRA Coral Reef Survey Data. http://agrra.org
[44]
Dell, C.L.A., Longo, G.O., Burkepile, D.E. and Manfrino, C. (2020) Few Herbivore Species Consume Dominant Macroalgae on a Caribbean Coral Reef. Frontiers in Marine Science, 7, Article No. 676. https://doi.org/10.3389/fmars.2020.00676
[45]
Suchley, A., McField, M.D. and Alvarez-Filip, L. (2016) Rapidly Increasing Macroalgal Cover Not Related to Herbivorous Fishes on Mesoamerican Reefs. PeerJ, 4, e2084. https://doi.org/10.7717/peerj.2084
[46]
Ortegón-Aznar, I., Chuc-Contreras, A. and Collado-Vides, L. (2017) Calcareous Green Algae Standing Stock in a Tropical Sedimentary Coast. Journal of Applied Phycology, 29, 2685-2693. https://doi.org/10.1007/s10811-017-1057-y
[47]
Duran, A., Adam, T.C., Palma, L., Moreno, S., Collado-Vides, L. and Burkepile, D.E. (2019) Feeding Behavior in Caribbean Surgeonfishes Varies across Fish Size, algal Abundance, and HABITAT Characteristics. Marine Ecology, 40, e12561.
https://doi.org/10.1111/maec.12561