|
青铜峡库区湿地自然湿地与修复湿地浮游植物群落比较研究
|
Abstract:
为探讨自然湿地与修复湿地浮游植物群落结构的差异,本研究于2021年春夏两季在青铜峡库区湿地自然保护区的自然湿地与修复湿地进行浮游植物的采集。对所得数据进行分析发现,本次调查共采集到浮游植物287种,其中绿藻门、硅藻门、裸藻门及蓝藻门物种数最多,分别占36.05%、29.59%、15.31%及8.16%。浮游植物优势种为旋转囊裸藻(Trachelomonas volvocina)、肘状针杆藻(Synedra ulna)和水华束丝藻(Aphanizomenon flosaquae)等;自然湿地和修复湿地Shannon-Wiener多样性指数(H')、Simpson多样性指数(D)和Pielou均匀度指数(J')均未呈现出显著的差异性。非度量多维尺度分析(Non-metric Multidimensional scaling, NMDS)与相似性分析(ANOSIM)结果表明,自然湿地与修复湿地浮游植物群落未表现出显著的空间差异性。本研究结果表明,自然湿地和修复湿地浮游植物群落结构无显著差异,修复湿地已形成稳定的浮游植物群落结构。
In order to explore the differences between natural wetlands and restored wetland phytoplankton flora, this study collected phytoplankton from natural wetlands and restored wetlands in Qingtongxia Reservoir Area wetland Nature Reserve in the spring and summer of 2021. The analysis of the obtained data found that a total of 287 species of phytoplankton were collected in this survey, and the number of species of green algae, diatom, naked algae and cyanobacteria accounted for 36.05%, 29.59%, 15.31% and 8.16% respectively. The dominant species of phytoplankton were Trachelomonas volvocina, Synedra ulna and Aphanizomenon flosaquae, while the Shannon-Wiener Diversity Index (H'), Simpson Diversity Index (D) and Pielou Eveness Index (J') of natural and restored wetlands did not show significant differences. The results of Non-Metric Multidimensional scaling (NMDS) and ANOSIM showed that there was no significant spatial difference between phytoplankton communities in natural wetlands and restored wetlands. The results of this study showed that there was no significant difference in the phytoplankton community structure between the natural and the restoration wetland, and the stable phytoplankton community structure had been formed in the restored wetland.
[1] | 魏海燕. 吴忠市湿地保护工作存在问题及建议[J]. 林业经济, 2017, 39(8): 97-100. |
[2] | Zhang, Y., Gao, W., Li, Y., Jiang, Y., Chen, X., Yao, Y., et al. (2021) Characteristics of the Phytoplankton Community Structure and Water Quality Evaluation in Autumn in the Huaihe River (China). International Journal of Environmental Research and Public Health, 18, Article No. 12092. https://doi.org/10.3390/ijerph182212092 |
[3] | 翟昊, 刘曼红, 明霄阳, 刘笳旻, 商淋友, 徐磊, 等. 宁夏沙湖生态修复前后浮游植物群落结构变化与水质评价[J]. 东北林业大学学报, 2021, 49(8): 84-89. |
[4] | 刘冬燕, 赵建夫, 张亚雷, 杨永川. 富营养水体生物修复中浮游植物的群落特征[J]. 水生生物学报, 2005, 29(2): 177-183. |
[5] | 孟睿, 何连生, 过龙根, 席北斗, 李中强, 舒俭民, 等. 长江中下游草型湖泊浮游植物群落及其与环境因子的典范对应分析[J]. 环境科学, 2013, 34(7): 2588-2596. |
[6] | 孙婷婷, 陈俭勇, 张亚, 魏朝军, 张聪, 李红涛, 等. 金沙江上游叶巴滩至苏洼龙段浮游植物群落特征及影响因子分析[J]. 淡水渔业, 2022, 52(2): 57-65. |
[7] | Rao, K., Zhang, X., Wang, M., Liu, J., Guo, W., Huang, G., et al. (2021) The Relative Importance of Environmental Factors in Predicting Phytoplankton Shifting and Cyanobacteria Abundance in Regulated Shallow Lakes. Environmental Pollution, 286, Article ID: 117555. https://doi.org/10.1016/j.envpol.2021.117555 |
[8] | 胡鸿钧, 魏印心. 中国淡水藻类: 系统、分类及生态[M]. 北京: 科学出版社, 2006. |
[9] | Shannon, C.E. (1997) The Mathematical Theory of Communication. M.D. Computing, 14, 306-317. |
[10] | Chutter, F.M. (1972) An Empirical Biotic Index of the Quality of Water in South African Streams and Rivers. Water Research, 6, 19-30. https://doi.org/10.1016/0043-1354(72)90170-4 |
[11] | 刘丹丹, 武海涛, 芦康乐, 杨萌尧, 管强, 赵文元, 等. 空间和环境因子对黄河口自然和淡水恢复湿地底栖动物群落的差异影响[J]. 生态学报, 2021, 41(14): 6893-6903. |
[12] | Tomasso, J.R. (1986) Comparative Toxicity of Nitrite to Freshwater Fishes. Aquatic Toxicology, 8, 129-137.
https://doi.org/10.1016/0166-445X(86)90059-7 |
[13] | 任辉, 田恬, 杨宇峰, 王庆. 珠江口南沙河涌浮游植物群落结构时空变化及其与环境因子的关系[J]. 生态学报, 2017, 37(22): 7729-7739. https://doi.org/10.5846/stxb201609131852 |
[14] | 洪松, 陈静生. 中国河流水生生物群落结构特征探讨[J]. 水生生物学报, 2002, 26(3): 295-305. |
[15] | 宋辞, 于洪贤. 镜泊湖浮游植物多样性分析及水质评价[J]. 东北林业大学学报, 2009, 37(4): 40-42. |