|
基于灰色模型的南通市人口老龄化预测
|
Abstract:
当前我国已经步入了老龄化社会,老龄化带来的社会各方面的问题也日益加重,如何解决未来的老龄化问题成为了我国当下社会关注的重点。本文将江苏省南通市的整体人口作为研究对象,以南通市统计局公布的2014~2020年老龄人口数据为基础,建立灰色系统GM(1,1)模型对未来6年的南通市老年人人口情况进行预测,为南通市的经济发展提供依据与参照。
At present, my country has entered an aging society, and the social problems brought by aging are becoming more and more serious. How to solve the problem of aging in the future has become the focus of our current society. This paper takes the overall population of Nantong City, Jiangsu Prov-ince as the research object, based on the 2014~2020 elderly population data released by the Nan-tong Municipal Bureau of Statistics, and establishes a grey system GM(1,1) model for the elderly population in Nantong City in the next six years. Predict the situation and provide a basis and ref-erence for the economic development of Nantong City.
[1] | Graunt, J. (1662) Natural and Political Observations Made upon the Bills of Mortality. |
[2] | Malthus, T.R. (1798) An Essay on the Principle of Population. Penguin Classics, London. |
[3] | Ueda, S. and Takahashi, M. (1940) Use of Ad-ministrative Records for Producing Official Statistics in Japan. Blackwell Pub., New York. |
[4] | 姜向群, 杜鹏. 人口老龄化对经济可持续发展影响的分析[[J]. 人口与发展, 2000(2): 1-8. |
[5] | 王宁, 张爽. 基于GM(1,1)模型的重庆市五大功能区人口老龄化预测[J]. 中国商论, 2016(20): 170-171. |
[6] | 杨梦冉. 基于GM(1,1)模型的上海市人口老龄化趋势预测[J]. 经济研究导刊, 2019(18): 48-49+134. |
[7] | 唐贤芳, 刘小刚, 崔岩. 基于PCA-BP神经网络的就业人口预测[J]. 微型电脑应用,2019, 35(7): 12-15. |
[8] | 王帅印, 张冉. ARIMA模型在河北省人口预测中的应用[C]//2020年“区域优质教育资源的整合研究”研讨会论文集. 2020: 348-350. |
[9] | 吴宇, 孙宏宇, 孙明辰, 王洪君. PDTR模型对城市流动人口的预测[J]. 智能计算机与应用, 2021, 11(9): 156-160. |
[10] | 严宇珺, 严运楼. 上海人口老龄化发展趋势及其影响因素——基于GM(1,1)和主成分分析[J]. 中国老年学杂志, 2021, 41(14): 3093-3098. |
[11] | 李金伟, 王瑞瑞. 基于灰色模型的信阳市老龄化人口趋势预测[J]. 现代商贸工业, 2021, 42(8): 46-47. |