|
混合价态铂纳米颗粒对持留菌杀伤作用的探索
|
Abstract:
目前有关抗菌方法的研究已经取得了丰硕的成果,而本项目重点在于联合多种抗菌机制进行高效、准确杀菌,新型混合价态铂纳米颗粒(dvPtNPs)则是研究的主要对象。本材料以零价铂核以及金属键结合的二价铂离子为核心,外由有机聚合物包裹,在近红外光(NIR)照射下,dvPtNPs快速释放出二价铂离子,发挥光热、光动力学以及化疗的多机制协同的精准可控抗菌作用。在之前研究的基础上,本项目发现dvPtNPs对于持留菌也有很好的杀伤作用,并通过多种方法探究了其杀伤持留菌的机制,包括使细菌RNA泄露、降低膜电位和ATP水平等。该材料有望成为对抗持留菌感染的新型治疗方法。
Current academic research on antibacterial methods has been fruitful, and our project focuses on efficient and accurate sterilization by combining multiple antibacterial mechanisms. The dual-valent platinum nanoparticles (dvPtNPs) are regarded as the main research object. The core of dvPtNPs is the central zero-valent platinum core and the wrapped divalent platinum ion, and is covered by organic polymer. Under near-infrared light (NIR) irradiation, it rapidly releases the divalent platinum ion, together with the zero-valent platinum core, exerts precise and controllable antibacterial effects integrating multiple mechanisms including photothermal, photodynamic and chemotherapy. On the basis of previous studies, this project found that dvPtNPs also have a good killing effect on persisters through various mechanisms, including causing bacterial RNA leakage, reducin membrane potential and ATP level, etc. This material is expected to be a new treatment method against persistent bacterial infection.
[1] | 雍江堰, 李燕. 持留菌产生及耐药分子机制的研究进展[J]. 现代预防医学, 2017, 44(22): 4171-4174+4198. |
[2] | Pu, Y., Zhao, Z., Li, Y., et al. (2016) Enhanced Efflux Activity Facilitates Drug Tolerance in Dormant Bacterial Cells. Molecular Cell, 62, 284-294. https://doi.org/10.1016/j.molcel.2016.03.035 |
[3] | D?rr, T., Lewis, K. and Vuli?, M. (2009) SOS Response Induces Persistence to Fluoroquinolones in Escherichia coli. PLOS Genetics, 5, e1000760. https://doi.org/10.1371/journal.pgen.1000760 |
[4] | 杨莹莹, 冯闪, 马陇豫, 孙梦瑶, 张审, 刘超群. 光热纳米材料在抗菌领域的研究进展[J]. 河南大学学报(医学版), 2021, 40(2): 147-151. |
[5] | 许煜. 半导体聚合物纳米诊疗剂的设计及其抗肿瘤/抗菌应用研究[D]: [博士学位论文]. 南京: 南京邮电大学, 2020. |
[6] | 张灵玲. 基于纳米材料的新型光热/药物协同抗菌体系的设计及应用[D]: [博士学位论文]. 武汉: 武汉大学, 2019. |
[7] | Tahir, K., Nazir, S., Ahmad, A., et al. (2017) Facile and Green Synthesis of Phytochemicals Capped Platinum Nanoparticles and in Vitro Their Superior Antibacterial Activity. Journal of Photochemistry & Photobiology B: Biology, 166, 246-251. https://doi.org/10.1016/j.jphotobiol.2016.12.016 |
[8] | Chwalibog, A., Sawosz, E., Hotowy, A., et al. (2010) Visualization of Interaction between Inorganic Nanoparticles and Bacteria or Fungi. International Journal of Nanomedicine, 5, 1085-1094. https://doi.org/10.2147/IJN.S13532 |
[9] | Kartalou, M. and Essigmann, J.M. (2001) Recognition of Cisplatin Adducts by Cellular Proteins. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 478, 1-21.
https://doi.org/10.1016/S0027-5107(01)00142-7 |
[10] | Ahmed, K., Raman, T. and Veerappan, A. (2016) Platinum Nanoparticles Inhibit Bacteria Proliferation and Rescue Zebrafish from Bacterial Infection. RSC Advances, 6, 44415-44424. https://doi.org/10.1039/C6RA03732A |
[11] | Zhao, H., Xu, J., Huang, W., Zhan, G., Zhao, Y., Chen, H. and Yang, X. (2019) Spatiotemporally Light-Activatable Platinum Nanocomplexes for Selective and Cooperative Cancer Therapy. ACS Nano, 13, 6647-6661.
https://doi.org/10.1021/acsnano.9b00972 |
[12] | Deng, T., Zhao, H., Shi, M., Qiu, Y., Jiang, S., Yang, X., Zhao, Y. and Zhang, Y. (2019) Photoactivated Trifunctional Platinum Nanobiotics for Precise Synergism of Multiple Antibacterial Modes. Small, 15, e1902647.
https://doi.org/10.1002/smll.201902647 |
[13] | Wang, Y., Wan, J., Miron, R.J., et al. (2016) Antibacterial Property and Mechanisms of Gold-Silver Nanocages. Nanoscale, 8, 11143-11152. https://doi.org/10.1039/C6NR01114D |
[14] | Sawosz, E., Chwalibog, A., Szeliga, J., et al. (2010) Visualization of Gold and Platinum Nanoparticles Interacting with Salmonella Enteritidis and Listeria monocytogenes. International Journal of Nanomedicine, 5, 631-637.
https://doi.org/10.2147/IJN.S12361 |
[15] | Rosenberg, B., Camp, L.V., Grimley, E.B., et al. (1967) The Inhibition of Growth or Cell Division in Escherichia coli by Different Ionic Species of Platinum(IV) Complexes. Journal of Biological Chemistry, 242, 1347-1352.
https://doi.org/10.1016/S0021-9258(18)96186-7 |
[16] | Johnstone, T.C., Alexander, S.M., Lin, W., et al. (2014) Effects of Monofunctional Platinum Agents on Bacterial Growth: A Retrospective Study. Journal of the American Chemical Society, 136, 116-118.
https://doi.org/10.1021/ja411742c |
[17] | Schilling, N.A., Berscheid, A., Schumacher, J., Saur, J.S., Konnerth, M.C., Wirtz, S.N., Beltrán-Bele?a, J.M., Zipperer, A., Krismer, B., Peschel, A., Kalbacher, H., Br?tz-Oesterhelt, H., Steinem, C. and Grond, S. (2019) Synthetic Lugdunin Analogues Reveal Essential Structural Motifs for Antimicrobial Action and Proton Translocation Capability. Angewandte Chemie International Edition, 58, 9234-9238. https://doi.org/10.1002/anie.201901589 |
[18] | Prindle, A., Liu, J., Asally, M., et al. (2015) Ion Channels Enable Electrical Communication in Bacterial Communities. Nature, 527, 59-63. https://doi.org/10.1021/pr0504079 |
[19] | Lok, C.N., Ho, C.M., Chen, R., et al. (2006) Proteomic Analysis of the Mode of Antibacterial Action of Silver Nanoparticles. Journal of Proteome Research, 5, 916-924. https://doi.org/10.1021/pr0504079 |
[20] | Yamanaka, M., Hara, K. and Kudo, J. (2005) Bactericidal Actions of a Silver Ion Solution on Escherichia coli, Studied by Energy-Filtering Transmission Electron Microscopy and Proteomic Analysis. Applied and Environmental Microbiology, 71, 7589-7593. https://doi.org/10.1128/AEM.71.11.7589-7593.2005 |