全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于NMR的煤孔隙结构与渗流特征研究进展
A Review of Pore Structure and Seepage Characteristics of Coal Samples Based on NMR

DOI: 10.12677/APP.2022.126036, PP. 311-319

Keywords: 核磁共振,煤,孔隙结构,流体分布,渗流特性
Nuclear Magnetic Resonance
, Coal Sample, Pore Structure, Fluid Distribution, The Seepage Characteristics

Full-Text   Cite this paper   Add to My Lib

Abstract:

煤孔隙结构及渗流特性方面的研究对煤矿瓦斯灾害防治具有重要意义。文中介绍了低场核磁共振技术(NMR)的基本原理,综述了孔隙结构与渗流特性方面的研究成果。结果表明:核磁共振技术是由于煤孔隙内含氢原子核受到射频磁场的作用发生偏转产生共振现象,由于纵向驰豫时间受分子扩散的影响测量时间较长,因此选用横向驰豫时间更能精确反映煤储层孔隙度;相对于其他研究方法,通过核磁共振弛豫谱可以快速、准确地得到孔径分布、孔隙度、流体分布及渗透率等物性参数,反映其微观孔隙结构信息;且在获取驰豫信号的基础上,结合一些辅助方法即可实现对煤渗流情况的实时观测。但是核磁共振驰豫谱分布图与其相对渗透率的具体关系还未可知。因此,今后的研究应致力于建立驰豫谱与相对渗透率两者之间的函数关系。
The research on coal pore structure and seepage characteristics is of great significance to the prevention and control of coal mine gas disasters. This paper introduces the basic principle of low-field nuclear magnetic resonance (NMR) technology, and summarizes the research results of pore structure and seepage characteristics. The results show that the nuclear magnetic resonance technology is due to the deflection of the hydrogen-containing atomic nucleus in the coal pore caused by the radio frequency magnetic field, and the longitudinal relaxation time is affected by the molecular diffusion. The measurement time is longer, so the transverse relaxation time can accurately reflect the porosity of the coal reservoir. Compared with other research methods, the physical parameters such as pore size distribution, porosity, fluid distribution and permeability can be quickly and accurately obtained by NMR relaxation spectrum, reflecting the microscopic pore structure information. On the basis of obtaining relaxation signals, combined with some auxiliary methods, real-time observation of coal seepage can be realized. However, the specific relationship between the NMR relaxation spectrum distribution and its relative permeability is still unknown. Therefore, future research should focus on establishing the functional relationship between relaxation spectrum and relative permeability.

References

[1]  Zhang, H., Liu, J. and Elsworth, D. (2008) How Sorption-Induced Matrix Deformation Affects Gas Flow in Coal Seams: A New FE Model. International Journal of Rock Mechanics & Mining Sciences, 45, 1226-1236.
https://doi.org/10.1016/j.ijrmms.2007.11.007
[2]  Wu, Y., Liu, J., Elsworth, D., et al. (2010) Dual Poroelastic Response of a Coal Seam to CO2 Injection. International Journal of Greenhouse Gas Control, 4, 668-678.
https://doi.org/10.1016/j.ijggc.2010.02.004
[3]  姚艳斌, 刘大猛, 蔡益栋, 等. 基于NMR和X-CT的煤的孔裂隙精细定量表征[J]. 中国科学: 地球科学, 2010, 40(11): 1598-1607.
[4]  李海波, 朱巨义, 郭和坤. 核磁共振T_2谱换算孔隙半径分布方法研究[J]. 波谱学杂志, 2008(2): 273-280.
[5]  徐国盛, 赵莉莉, 徐发, 等. 西湖凹陷某构造花港组致密砂岩储层的渗流特征[J]. 成都理工大学学报(自然科学版), 2012, 39(2): 113-121.
[6]  王学武, 杨正明, 时宇, 等. 核磁共振研究低渗透砂岩油水两相渗流规律[J]. 科技导报, 2009, 27(15): 56-58.
[7]  史全水. 核磁共振技术及其应用[J]. 洛阳师范学院学报, 2006(2): 82-84.
[8]  刘亚鹏. 高阶煤孔裂隙特征及其影响因素的低场核磁共振实验研究[D]: [硕士学位论文]. 焦作: 河南理工大学, 2017.
[9]  杨钧岩, 吴畏, 钱慧良. 核磁共振在岩土工程方面的应用综述[J]. 工程建设, 2019, 51(3): 26-31.
[10]  张娜, 赵方方, 王水兵, 李家斌, 孙冻炎. 岩石孔隙结构与渗流特征核磁共振研究综述[J]. 水利水电技术, 2018, 49(7): 28-36.
[11]  唐晓敏. 骨架导电低阻油层人造岩样实验及导电规律与导电模型研究[D]: [硕士学位论文]. 大庆: 东北石油大学, 2019.
[12]  王瑞. 储层孔隙结构研究方法综述[J]. 中国石油和化工标准与质量, 2019, 39(12): 143-144.
[13]  米悦, 陈朝兵, 王江涛. 致密砂岩储层微观孔喉结构表征方法综述[J]. 地下水, 2021, 43(6): 203-204+216.
[14]  张晓祎. 页岩油气储层孔隙结构表征新方法研究[D]: [硕士学位论文]. 北京: 中国科学院大学(中国科学院渗流流体力学研究所), 2021.
[15]  张攀攀. 微生物厌氧降解对煤孔隙特征影响的实验研究[D]: [硕士学位论文]. 太原: 太原理工大学, 2020.
[16]  Yao, Y.B., Liu, D.M., Che, Y., et al. (2009) Petrophysical Characterization of Coals by Low-Field Nuclear Magnetic Resonance (NMR). Fuel, 89, 1371-1380.
https://doi.org/10.1016/j.fuel.2009.11.005
[17]  Yao, Y.B. and Liu, D.M. (2012) Comparison of Low-Field NMR and Mercury Intrusion Porosimetry in Characterizing Pore Size Distributions of Coals. Fuel, 95, 152-158.
https://doi.org/10.1016/j.fuel.2011.12.039
[18]  Yao, Y.B., Liu, D.M., Cai, Y.D. and Li, J.Q. (2010) Advanced Characterization of Pores and Fractures in Coals by Nuclear Magnetic Resonance and X-Ray Computed Tomography. Science China Earth Sciences, 53, 854-862.
https://doi.org/10.1007/s11430-010-0057-4
[19]  姚艳斌, 刘大锰. 基于核磁共振弛豫谱的煤储层岩石物理与流体表征[J]. 煤炭科学技术, 2016, 44(6): 14-22.
[20]  王波, 陆长亮, 刘重阳, 胡仕宇, 黄子康. 流变扰动效应引起岩石微观损伤演化试验研究[J]. 煤炭学报, 2020, 45(S1): 247-254.
[21]  李杰林. 基于核磁共振技术的寒区岩石冻融损伤机理试验研究[D]: [博士学位论文]. 长沙: 中南大学, 2012.
[22]  Yuan, X.T., Peng, S.M., Lin, C.Y., et al. (2005) An Interpretation Method for Permeability Based on Flow Units and Its Applicability. Acta Petrolei Sinica, 26, 78-81.
[23]  Zhang, J.C. and Song, K.P. (2007) Eigen Curve of Relative Permeability and Its Application. Acta Petrolei Sinica, 28, 104-107.
[24]  Zhao, J. Hui, Y.A., Wang, P., et al. (2007) Permeability Synthesis Method for Heterogeneous Reservoirs. Acta Petrolei Sinica, 28, 102-104.
[25]  姚艳斌, 刘大锰. 基于核磁共振弛豫谱技术的页岩储层物性与流体特征研究[J]. 煤炭学报, 2018, 43(1): 181-189.
[26]  周尚文, 薛华庆, 郭伟, 李晓波. 川南龙马溪组页岩核磁渗透率新模型研究[J]. 中国石油大学学报(自然科学版), 2016, 40(1): 56-61.
[27]  Yao, Y.B., Liu, D.M., Liu, J.G. and Xie, S.B. (2015) Assessing the Water Migration and Permeability of Large Intact Bituminous and Anthracite Coals Using NMR Relaxation Spectrometry. Transport in Porous Media, 107, 527-542.
https://doi.org/10.1007/s11242-014-0452-y
[28]  杨山. 基于驱替实验及数字岩心的微观剩余油研究[D]: [硕士学位论文]. 东营: 中国石油大学(华东), 2015.
[29]  苏玉亮, 李新雨, 李蕾, 庄新宇, 王程伟, 付金刚, 李东升. 基于核磁共振可视化试验的致密气藏气水两相渗流机制[J]. 中国石油大学学报(自然科学版), 2021, 45(5): 104-112.
[30]  程毅翀. 基于低场核磁共振成像技术的岩心内流体分布可视化研究[D]: [硕士学位论文]. 上海: 上海大学, 2014.
[31]  昌伦杰, 龙威, 伍轶鸣, 陈飞飞, 刘志良, 王冠群. 缝洞型碳酸盐岩凝析气藏压力衰竭过程中凝析油微观赋存状态[J]. 科学技术与工程, 2021, 21(26): 11136-11143.
[32]  范楠. 煤孔隙结构多尺度表征及其对瓦斯运移特性影响的实验研究[D]: [博士学位论文]. 阜新: 辽宁工程技术大学, 2021.
[33]  曹安, 龙威, 杜虹宝, 陈飞飞, 赵红, 王冠群, 袁萍. 基于微米CT技术的沥青质识别对岩石物性参数的影响研究[J]. 当代化工, 2021, 50(12): 2869-2872+2876.
[34]  王琨, 周航宇, 赖杰, 王坤杰, 刘音. 核磁共振技术在岩石物理与孔隙结构表征中的应用[J]. 仪器仪表学报, 2020, 41(2): 101-114.
[35]  刘曰强, 乔向阳, 魏尚武, 袁昭. 应用核磁共振技术研究吐哈盆地低渗透储层渗流能力[J]. 特种油气藏, 2005(2): 96-99+110.
[36]  Loskutov, V. and Zhakov, S. (2016) Dependence of the Liquid Transverse Relaxation Time [Formula Omitted] in Porous Media on Fluid Flow Velocity. International Journal of Heat and Mass Transfer, 101, 692-698.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.057
[37]  胡勇, 朱华银, 万玉金, 韩永新, 王玉凤. 大庆火山岩孔隙结构及气水渗流特征[J]. 西南石油大学学报, 2007, 29(5): 63-65+89+200.
[38]  唐巨鹏. 煤层气赋存运移的核磁共振成像理论和实验研究[D]: [博士学位论文]. 阜新: 辽宁工程技术大学, 2006.
[39]  王文举. 致密砂岩气藏气水两相渗流特征实验研究[D]: [硕士学位论文]. 北京: 中国石油大学, 2017.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133