全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高盐稠油油藏两亲降粘驱油体系溶液性能研究
Performance of Amphiphilic Polymer Flooding System in Reducing the Viscosity of Heavy Oil in High Salinity Environment

DOI: 10.12677/JOGT.2022.442010, PP. 68-75

Keywords: 高盐,稠油,两亲降粘驱油体系
High Salinity
, Heavy Oil, Amphiphilic Polymer Flooding System

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于尚一区外围区块属天然能量开发,内部井没有能量补充,油藏驱动力弱,油水流度比大,要求驱油体系在微动力下具有高效降粘能力。但其油藏非均质性强、渗透率较低、储层润湿洗油困难,因此对驱油体系的高效渗透、润湿洗油、均匀波及能力提出了更高的要求,亟待开发以微动力降粘为主、兼具润湿洗油功能的两亲聚合物驱油体系。对此本文研制了新型两亲降粘驱油体系(APFS-2021),在高盐环境下仍能形成网络状结构,亲和稠油能力强、降低稠油粘度效果好,针对现场油藏条件降粘率可达90%以上。
Due to the development of natural energy in the peripheral block of Shang I, there is no energy supplement in the oil wells, weak driving force of reservoir, and the large oil-water motobility ratio, which requires the oil displacement system to have high viscosity reduction ability under micro power. Besides, the reservoir heterogeneity is strong, the permeability is low, and it is difficult to wet and flood oil, and therefore, high requirements are put forward for efficient permeability, squeezing oil, and uniform sweep ability of oil displacement system. It is urgent to develop amphiphilic polymer flooding system with micro-dynamic viscosity reduction, oil wetting, and flooding function. In this paper, a novel amphiphilic polymer flooding system (APFS-2021) was developed, which can still form a network structure in high salt environment, with a strong affinity for heavy oil and a good effect of reducing the viscosity of heavy oil. The viscosity reduction rate can reach more than 90% under field reservoir conditions.

References

[1]  孙焕泉. 胜利油田三次采油技术的实践与认识[J]. 石油勘探与开发, 2006, 33(3): 262-266.
[2]  元福卿, 李焕臣, 张朝启. 胜利油区化学驱潜力评价[J]. 油气采收率技术, 2000, 7(2): 12-15.
[3]  张以根, 元福卿, 祝仰文, 等. 胜利油区化学驱油技术面临的矛盾及对策[J]. 油气地质与采收率, 2003, 10(6): 53-55.
[4]  Krim, J., Solina, D. and Chiarello, R. (1991) Nanotribology of a Kr Monolayer: A Quartz-Crystal Microbalance Study of Atomic-Scale Friction. Physical Review Letters, 66, 181-184.
https://doi.org/10.1103/PhysRevLett.66.181
[5]  Hook, F., Ray, A., Norden, B., et al. (2001) Characterization of PNA and DNA Immobilization and Subsequent Hybridization with DNA Using Acoustic-Shear-Wave Attenuation Measurements. Langmuir, 17, 8305-8312.
https://doi.org/10.1021/la0107704
[6]  Abudu, A. and Goual, L. (2008) Adsorption of Crude Oil on Surfaces Using Quartz Crystal Microbalance with Dissipation (QCM-D) under Flow Conditions. Energy & Fuels, 23, 1237-1248.
https://doi.org/10.1021/ef800616x
[7]  Tavakkoli, M., Panuganti, S.R., Taghikhani, V., et al. (2014) Asphaltene Deposition in Different Depositing Environments: Part 2. Real Oil. Energy & Fuels, 28, 3594-3603.
https://doi.org/10.1021/ef401868d

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133