全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

心脏重编程相关机制研究进展
Research Progress of Cardiac Reprogramming Mechanism

DOI: 10.12677/ACM.2022.126742, PP. 5121-5127

Keywords: 心肌细胞,直接重编程,成纤维细胞,再生,重编程机制
Myocardial Cells
, Direct Reprogramming, Fibroblasts, Regeneration, Reprogramming Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

心肌梗死占心血管疾病死亡率的50%。由于梗死部位发生纤维化重塑,在急性心肌梗死中幸存下来的人有着心力衰竭的显著风险。传统治疗方法可改善心脏血供,无法使已经受损的心肌细胞再生,而心脏再生医学的兴起为心肌梗死的治疗提供了新出路。心脏重编程可增加功能性心肌细胞数量并且减少心肌梗死后纤维化面积。本文主要介绍心脏直接重编程方法和相关机制研究,尤其是关于心脏重编程相关机制的研究进展。
Myocardial infarction accounts for 50% of the mortality of cardiovascular diseases. People who sur-vive an acute myocardial infarction are at significant risk of heart failure due to fibrotic remodeling at the infarct site. Traditional treatment methods can improve the blood supply to the heart, but cannot regenerate damaged myocardial cells. However, the rise of cardiac regenerative medicine provides a new way for the treatment of myocardial infarction. Cardiac reprogramming increases the number of functional cardiomyocytes and reduces the area of fibrosis after myocardial infarc-tion. This paper mainly introduces the methods and mechanisms of cardiac direct reprogramming, especially the research progress on the mechanisms of cardiac reprogramming.

References

[1]  Ieda, M., Fu, J.D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B.G. and Srivastava, D. (2010) Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors. Cell, 142, 375-386.
https://doi.org/10.1016/j.cell.2010.07.002
[2]  Song, K., Nam, Y.J., Luo, X., Qi, X., Tan, W., Huang, G.N., Acharya, A., Smith, C.L., Tallquist, M.D., Neilson, E.G., Hill, J.A., Bassel-Duby, R. and Olson, E.N. (2012) Heart Re-pair by Reprogramming Non-Myocytes with Cardiac Transcription Factors. Nature, 485, 599-604.
https://doi.org/10.1038/nature11139
[3]  Addis, R.C., Ifkovits, J.L., Pinto, F., Kellam, L.D., Esteso, P., Rentschler, S., Christoforou, N., Epstein, J.A. and Gearhart, J.D. (2013) Optimization of Direct Fibroblast Reprogramming to Car-diomyocytes Using Calcium Activity as a Functional Measure of Success. Journal of Molecular and Cellular Cardiology, 60, 97-106.
https://doi.org/10.1016/j.yjmcc.2013.04.004
[4]  Christoforou, N., Chellappan, M., Adler, A.F., Kirkton, R.D., Wu, T., Addis, R.C., Bursac, N. and Leong, K.W. (2013) Transcription Factors MYOCD, SRF, Mesp1 and SMARCD3 En-hance the Cardio-Inducing Effect of GATA4, TBX5, and MEF2C during Direct Cellular Reprogramming. PLoS One, 8, e63577.
https://doi.org/10.1371/journal.pone.0063577
[5]  Zhao, H., Zhang, Y., Xu, X., Sun, Q., Yang, C., Wang, H., Yang, J., Yang, Y., Yang, X., Liu, Y. and Zhao, Y. (2021) Sall4 and Myocd Empower Direct Cardiac Reprogramming from Adult Cardiac Fibroblasts after Injury. Frontiers in Cell and Developmental Biology, 9, 608367.
https://doi.org/10.3389/fcell.2021.608367
[6]  Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A.E. and Melton, D.A. (2008) Induction of Pluripotent Stem Cells by Defined Factors Is Greatly Improved by Small-Molecule Compounds. Nature Biotechnology, 26, 795-797.
https://doi.org/10.1038/nbt1418
[7]  Hou, P., Li, Y., Zhang, X., Liu, C., Guan, J., Li, H., Zhao, T., Ye, J., Yang, W., Liu, K., Ge, J., Xu, J., Zhang, Q., Zhao, Y. and Deng, H. (2013) Pluripotent Stem Cells Induced from Mouse Somatic Cells by Small-Molecule Compounds. Science, 341, 651-654.
https://doi.org/10.1126/science.1239278
[8]  Fu, Y., Huang, C., Xu, X., Gu, H., Ye, Y., Jiang, C., Qiu, Z. and Xie, X. (2015) Direct Reprogramming of Mouse Fibroblasts into Cardiomyocytes with Chemical Cocktails. Cell Research, 25, 1013-1024.
https://doi.org/10.1038/cr.2015.99
[9]  Jayawardena, T.M., Egemnazarov, B., Finch, E.A., Zhang, L., Payne, J.A., Pandya, K., Zhang, Z., Rosenberg, P., Mirotsou, M. and Dzau, V.J. (2012) MicroRNA-Mediated in Vitro and in Vivo Direct Reprogramming of Cardiac Fibroblasts to Cardiomyocytes. Circulation Research, 110, 1465-1473.
https://doi.org/10.1161/CIRCRESAHA.112.269035
[10]  Muraoka, N., Yamakawa, H., Miyamoto, K., Sadahiro, T., Umei, T., Isomi, M., Nakashima, H., Akiyama, M., Wada, R., Inagawa, K., Nishiyama, T., Kaneda, R., Fukuda, T., Takeda, S., Tohyama, S., Hashimoto, H., Kawamura, Y., Goshima, N., Aeba, R., Yamagishi, H., Fukuda, K. and Ieda, M. (2014) MiR-133 Promotes Cardiac Reprogramming by Directly Repressing Snai1 and Silencing Fibroblast Signa-tures. The EMBO Journal, 33, 1565-1581.
https://doi.org/10.15252/embj.201387605
[11]  Huang, S., Li, X., Zheng, H., Si, X., Li, B., Wei, G., Li, C., Chen, Y., Chen, Y., Liao, W., Liao, Y. and Bin, J. (2019) Loss of Super-Enhancer-Regulated circRNANfix Induces Cardiac Regeneration after Myocardial Infarction in Adult Mice. Circulation, 139, 2857-2876.
https://doi.org/10.1161/CIRCULATIONAHA.118.038361
[12]  Ifkovits, J.L., Addis, R.C., Epstein, J.A. and Gearhart, J.D. (2014) Inhibition of TGFβ Signaling Increases Direct Conversion of Fibroblasts to Induced Cardiomyo-cytes. PLoS One, 9, e89678.
https://doi.org/10.1371/journal.pone.0089678
[13]  Zhao, Y., Londono, P., Cao, Y., Sharpe, E.J., Proenza, C., O’Rourke, R., Jones, K.L., Jeong, M.Y., Walker, L.A., Buttrick, P.M., McKinsey, T.A. and Song, K. (2015) High-Efficiency Reprogramming of Fibroblasts into Cardiomyocytes Requires Suppression of Pro-Fibrotic Signalling. Nature Communications, 6, Article No. 8243.
https://doi.org/10.1038/ncomms9243
[14]  Abad, M., Hashimoto, H., Zhou, H., Morales, M.G., Chen, B., Bas-sel-Duby, R. and Olson, E.N. (2017) Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Tran-scriptional Activity. Stem Cell Reports, 8, 548-560.
https://doi.org/10.1016/j.stemcr.2017.01.025
[15]  Hashimoto, H., Wang, Z., Garry, G.A., Malladi, V.S., Botten, G.A., Ye, W., Zhou, H., Osterwalder, M., Dickel, D.E., Visel, A., Liu, N., Bassel-Duby, R. and Olson, E.N. (2019) Cardiac Reprogramming Factors Synergistically Activate Genome-Wide Cardiogenic Stage-Specific Enhancers. Cell Stem Cell, 25, 69-86.e5.
https://doi.org/10.1016/j.stem.2019.03.022
[16]  Lee, J., Sayed, N., Hunter, A., Au, K.F., Wong, W.H., Mocarski, E.S., Pera, R.R., Yakubov, E. and Cooke, J.P. (2012) Activation of Innate Immunity Is Required for Efficient Nuclear Reprogramming. Cell, 151, 547-558.
https://doi.org/10.1016/j.cell.2012.09.034
[17]  Sayed, N., Ospino, F., Himmati, F., Lee, J., Chanda, P., Mocarski, E.S. and Cooke, J.P. (2017) Retinoic Acid Inducible Gene 1 Protein (RIG1)-Like Receptor Pathway Is Required for Ef-ficient Nuclear Reprogramming. Stem Cells, 35, 1197-1207.
https://doi.org/10.1002/stem.2607
[18]  Hu, J., Hodg-kinson, C.P., Pratt, R.E., Lee, J., Sullenger, B.A. and Dzau, V.J. (2020) Enhancing Cardiac Reprogramming via Synthet-ic RNA Oligonucleotides. Molecular Therapy Nucleic Acids, 23, 55-62.
https://doi.org/10.1016/j.omtn.2020.10.034
[19]  Zhou, Y., Liu, Z., Welch, J.D., Gao, X., Wang, L., Garbutt, T., Keepers, B., Ma, H., Prins, J.F., Shen, W., Liu, J. and Qian, L. (2019) Single-Cell Transcriptomic Analyses of Cell Fate Transitions during Human Cardiac Reprogramming. Cell Stem Cell, 25, 149-164.e9.
https://doi.org/10.1016/j.stem.2019.05.020
[20]  Muraoka, N., Nara, K., Tamura, F., Kojima, H., Yamakawa, H., Sadahiro, T., Miyamoto, K., Isomi, M., Haginiwa, S., Tani, H., Kurotsu, S., Osakabe, R., Torii, S., Shimizu, S., Okano, H., Sugimoto, Y., Fukuda, K. and Ieda, M. (2019) Role of Cyclooxygenase-2-Mediated Prostaglandin E2-Prostaglandin E Receptor 4 Signaling in Cardiac Reprogramming. Nature Communications, 10, Article No. 674.
https://doi.org/10.1038/s41467-019-08626-y
[21]  Wang, S., Xia, P., Ye, B., Huang, G., Liu, J. and Fan, Z. (2013) Transient Activation of Autophagy via Sox2-Mediated Suppression of mTOR Is an Important Early Step in Reprogram-ming to Pluripotency. Cell Stem Cell, 13, 617-625.
https://doi.org/10.1016/j.stem.2013.10.005
[22]  Ma, T., Li, J., Xu, Y., Yu, C., Xu, T., Wang, H., Liu, K., Cao, N., Nie, B.M., Zhu, S.Y., Xu, S., Li, K., Wei, W.G., Wu, Y., Guan, K.L. and Ding, S. (2015) Atg5-Independent Autophagy Regulates Mitochondrial Clearance and Is Essential for iPSC Reprogramming. Nature Cell Biology, 17, 1379-1387.
https://doi.org/10.1038/ncb3256
[23]  Wang, L., Ma, H., Huang, P., Xie, Y., Near, D., Wang, H., Xu, J., Yang, Y., Xu, Y., Garbutt, T., Zhou, Y., Liu, Z., Yin, C., Bressan, M., Taylor, J.M., Liu, J. and Qian, L. (2020) Down-regulation of Beclin1 Promotes Direct Cardiac Reprogramming. Science Translational Medicine, 12, eaay7856.
https://doi.org/10.1126/scitranslmed.aay7856
[24]  Dal-Pra, S., Hodgkinson, C.P., Mirotsou, M., Kirste, I. and Dzau, V.J. (2017) Demethylation of H3K27 Is Essential for the Induction of Direct Cardiac Reprogramming by miR Combo. Circulation Research, 120, 1403-1413.
https://doi.org/10.1161/CIRCRESAHA.116.308741
[25]  Zhou, Y., Wang, L., Vaseghi, H.R., Liu, Z., Lu, R., Ali-mohamadi, S., Yin, C., Fu, J.D., Wang, G.G., Liu, J. and Qian, L. (2016) Bmi1 Is a Key Epigenetic Barrier to Direct Cardiac Reprogramming. Cell Stem Cell, 18, 382-395.
https://doi.org/10.1016/j.stem.2016.02.003
[26]  Liu, L., Lei, I., Karatas, H., Li, Y., Wang, L., Gnatovskiy, L., Dou, Y., Wang, S., Qian, L. and Wang, Z. (2016) Targeting Mll1 H3K4 Methyltransferase Activity to Guide Cardiac Lineage Specific Reprogramming of Fibroblasts. Cell Discovery, 2, Article No. 16036.
https://doi.org/10.1038/celldisc.2016.36
[27]  Schiebinger, G., Shu, J., Tabaka, M., Cleary, B., Subramanian, V., Solomon, A., Gould, J., Liu, S., Lin, S., Berube, P., Lee, L., Chen, J., Brumbaugh, J., Rigollet, P., Hochedlinger, K., Jaenisch, R., Regev, A. and Lander, E.S. (2019) Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming. Cell, 176, 928-943.e22.
https://doi.org/10.1016/j.cell.2019.01.006
[28]  Xing, Q.R., El Farran, C.A., Gautam, P., Chuah, Y.S., Warrier, T., Toh, C.X.D., Kang, N.Y., Sugii, S., Chang, Y.T., Xu, J., Collins, J.J., Daley, G.Q., Li, H., Zhang, L.F. and Loh, Y.H. (2020) Diversification of Reprogramming Trajectories Revealed by Parallel Single-Cell Transcriptome and Chromatin Accessibility Sequencing. Science Advances, 6, eaba1190.
https://doi.org/10.1126/sciadv.aba1190
[29]  Cao, J., Cusanovich, D.A., Ramani, V., Aghamirzaie, D., Pliner, H.A., Hill, A.J., Daza, R.M., McFaline-Figueroa, J.L., Packer, J.S., Christiansen, L., Steemers, F.J., Adey, A.C., Trapnell, C. and Shendure, J. (2018) Joint Profiling of Chromatin Ac-cessibility and Gene Expression in Thousands of Single Cells. Science, 361, 1380-1385.
https://doi.org/10.1126/science.aau0730
[30]  Deng, Y., Bao, F., Dai, Q., Wu, L.F. and Altschuler, S.J. (2019) Scalable Analysis of Cell-Type Composition from Single-Cell Transcriptomics Using Deep Recurrent Learning. Nature Methods, 16, 311-314.
https://doi.org/10.1038/s41592-019-0353-7
[31]  Wang, H., Yang, Y., Qian, Y., Liu, J. and Qian, L. (2021) Delin-eating Chromatin Accessibility Re-Patterning at Single Cell Level during Early Stage of Direct Cardiac Reprogramming. Journal of Molecular and Cellular Cardiology, 162, 62-71.
https://doi.org/10.1016/j.yjmcc.2021.09.002
[32]  Kurotsu, S., Sadahiro, T., Fujita, R., Tani, H., Yamakawa, H., Tamura, F., Isomi, M., Kojima, H., Yamada, Y., Abe, Y., Murakata, Y., Akiyama, T., Muraoka, N., Harada, I., Suzuki, T., Fukuda, K. and Ieda, M. (2020) Soft Matrix Promotes Cardiac Reprogramming via Inhibition of YAP/TAZ and Sup-pression of Fibroblast Signatures. Stem Cell Reports, 15, 612-628.
https://doi.org/10.1016/j.stemcr.2020.07.022
[33]  Yamakawa, H., Muraoka, N., Miyamoto, K., Sadahiro, T., Isomi, M., Haginiwa, S., Kojima, H., Umei, T., Akiyama, M., Kuishi, Y., Kurokawa, J., Furukawa, T., Fukuda, K. and Ieda, M. (2015) Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under De-finedConditions. Stem Cell Reports, 5, 1128-1142.
https://doi.org/10.1016/j.stemcr.2015.10.019
[34]  Wang, Y., Shi, S., Liu, H. and Meng, L. (2016) Hypoxia Enhances Direct Reprogramming of Mouse Fibroblasts to Cardiomyo-cyte-Like Cells. Cell Reprogramming, 18, 1-7.
https://doi.org/10.1089/cell.2015.0051

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133