|
铁代谢与脑小血管病的研究进展
|
Abstract:
近年来,随着人口老龄化的加快、神经影像学技术的普及和广泛应用,具有高隐袭性、高发病率、高致残率的脑小血管病(Cerebral small vessel disease, CSVD)逐渐被发现且被人们所重视,但目前其发病机制尚未明确,既往有研究发现CSVD因血脑屏障破坏及大脑缺血缺氧导致脑铁含量增多,铁过载能通过芬顿反应,产生大量自由基,引起脂质过氧化,导致神经元死亡、认知能力下降。同时,铁元素具有升压作用,且可能是糖尿病的标志性元素,糖尿病患者血清铁蛋白水平明显升高,而高血压、糖尿病,特别是高血压是CSVD及其所致认知障碍的主要危险因素。并且通过铁螯合剂(去铁胺、去铁酮)治疗CSVD可延缓细胞、神经损害及神经退变的发生,取得显著疗效。因此铁代谢紊乱可能与CSVD发生发展有关,然而,目前这方面文献报道较少,现就铁代谢与CSVD的研究进展进行综述。
In recent years, with the acceleration of the aging of the population, the popularization and wide application of neuroimaging technology, Cerebral small vessel disease (CSVD) with high insidious, high incidence, high disability rate has been gradually discovered and paid attention to, but its pathogenesis has not been clear. Previous studies have found that CSVD results in increased brain iron content due to the destruction of blood-brain barrier and cerebral ischemia and hypoxia. Iron overload can generate a large number of free radicals through fenton reaction, resulting in lipid peroxidation, neuronal death and cognitive decline. At the same time, iron has a hypertensive effect and may be a hallmark element of diabetes. Serum ferritin level in diabetes patients is significantly increased, while hypertension and diabetes, especially hypertension, are the main risk factors for CSVD and the cognitive impairment caused by it. In addition, the treatment of CSVD with iron che-lating agent (deferroamine, deferroone) can delay the occurrence of cell and nerve damage and nerve degeneration, and achieve significant curative effect. Therefore, iron metabolism disorder may be related to the occurrence and development of CSVD. However, there are few studies on this aspect at present. This paper reviews the research progress of iron metabolism and CSVD.
[1] | Ortman, J.M., Velkoff, V.A. and Hogan, H. (2014) An Aging Nation: The Older Population in the United States. In: Current Population Reports, U.S. Census Bureau, Washington DC, 25-1140. |
[2] | Kontis, V., Bennett, J.E., Mathers, C.D., et al. (2017) Future Life Expectancy in 35 Industrialised Countries: Projections with a Bayesian Model Ensemble. The Lancet, 389, 1323-1335. https://doi.org/10.1016/S0140-6736(16)32381-9 |
[3] | Teng, Z., Dong, Y., Zhang, D., et al. (2017) Cerebral Small Vessel Disease and Post-Stroke Cognitive Impairment. International Journal of Neurosci-ence, 127, 824-830. https://doi.org/10.1080/00207454.2016.1261291 |
[4] | 孙瑞霞, 苏永祥, 孙剑辉. 原子吸收光谱法测定脑血管病患者脑脊液中微量元素[J]. 光谱学与光谱分析, 2006(4): 720-722. |
[5] | Im, D.S., Jeon, J.W., Lee, J.S., et al. (2012) Role of the NMDA Receptor and Iron on Free Radical Production and Brain Damage Following Transient Middle Cerebral Artery Occlusion. Brain Research, 1455, 114-123.
https://doi.org/10.1016/j.brainres.2012.03.025 |
[6] | Thomas, C., Mackey, M.M., Diaz, A.A., et al. (2009) Hydrox-yl Radical Is Produced via the Fenton Reaction in Submitochondrial Particles under Oxidative Stress: Implications for Diseases Associated with Iron Accumulation. Redox Report, 14, 102-108. https://doi.org/10.1179/135100009X392566 |
[7] | Pantoni, L. (2010) Cerebral Small Vessel Disease: From Patho-genesis and Clinical Characteristics to Therapeutic Challenges. The Lancet Neurology, 9, 689-701. https://doi.org/10.1016/S1474-4422(10)70104-6 |
[8] | Schmidt, R., Seiler, S. and Loitfelder, M. (2016) Longitudi-nal Change of Small-Vessel Disease-Related Brain Abnormalities. Journal of Cerebral Blood Flow & Metabolism, 36, 26-39. https://doi.org/10.1038/jcbfm.2015.72 |
[9] | Haffner, C., Malik, R. and Dichgans, M. (2016) Genetic Factors in Cerebral Small Vessel Disease and Their Impact on Stroke and Dementia. Journal of Cerebral Blood Flow & Metabo-lism, 36, 158-171.
https://doi.org/10.1038/jcbfm.2015.71 |
[10] | Cannistraro, R.J., Badi, M., Eidelman, B.H., et al. (2019) CNS Small Vessel Disease: A Clinical Review. Neurology, 92, 1146-1156. https://doi.org/10.1212/WNL.0000000000007654 |
[11] | Hilal, S., Mok, V., Youn, Y.C., et al. (2017) Prevalence, Risk Factors and Consequences of Cerebral Small Vessel Diseases: Data from Three Asian Countries. Journal of Neu-rology, Neurosurgery & Psychiatry, 88, 669-674.
https://doi.org/10.1136/jnnp-2016-315324 |
[12] | Wardlaw, J.M. (2001) Prevalence of Cerebral White Matter Lesions in Elderly People: A Population Based Magnetic Resonance Imaging Study: The Rotterdam Scan Study. Journal of Neu-rology, Neurosurgery & Psychiatry, 70, 2-3.
https://doi.org/10.1136/jnnp.70.1.2 |
[13] | Poels, M.M., Vernooij, M.W., Ikram, M.A., et al. (2010) Prevalence and Risk Factors of Cerebral Microbleeds: An Update of the Rotterdam Scan Study. Stroke, 41, S103-S106. https://doi.org/10.1161/STROKEAHA.110.595181 |
[14] | 封红亮, 张帅美, 罗征进, 等. 严重脑白质疏松症相关因素的病例对照研究[J]. 中风与神经疾病杂志, 2017, 34(4): 324-327. |
[15] | Vernooij, M.W., Van Der Lugt, A., Ikram, M.A., et al. (2008) Prevalence and Risk Factors of Cerebral Microbleeds: The Rotterdam Scan Study. Neurology, 12, 1208-1214. https://doi.org/10.1212/01.wnl.0000307750.41970.d9 |
[16] | Klarenbeek, P., Van Oostenbrugge, R.J., Rouhl, R.P., et al. (2013) Ambulatory Blood Pressure in Patients with Lacunar Stroke: Association with Total MRI Bur-den of Cerebral Small Vessel Disease. Stroke, 44, 2995-2999.
https://doi.org/10.1161/STROKEAHA.113.002545 |
[17] | Del Bene, A., Ciolli, L., Borgheresi, L., et al. (2015) Is Type 2 Diabetes Related to Leukoaraiosis? An Updated Review. Acta Neurologica Scandinavica, 132, 147-155. https://doi.org/10.1111/ane.12398 |
[18] | 杜鹃. 血脂、肾小球滤过率和颈动脉斑块与脑小血管病相关性的多因素分析研究[J]. 中国实验诊断学, 2012, 16(6): 1008-1012. |
[19] | 蒋胶胶, 杨改清, 徐志强, 等. 脑小血管病发病机制研究进展[J]. 国际脑血管病杂志, 2018, 26(8): 628-631. |
[20] | Khoshnam, S.E., Winlow, W., Farbood, Y., et al. (2017) Emerging Roles of microRNAs in Ischemic Stroke: As Possible Therapeutic Agents. Journal of Stroke, 19, 166-187. https://doi.org/10.5853/jos.2016.01368 |
[21] | He, W., Goodkind, D. and Kowal, P. (2016) An Aging World: 2015. International Population Reports. Last Modified March, 31. |
[22] | Wardlaw, J.M., Smith, E.E., Biessels, G.J., et al. (2013) Neuroimaging Standards for Research into Small Vessel Disease and Its Contribution to Ageing and Neurodegeneration. The Lancet Neurology, 12, 822-838.
https://doi.org/10.1016/S1474-4422(13)70124-8 |
[23] | Staals, J., Makin, S.D., Doubal, F.N., et al. (2014) Stroke Subtype, Vascular Risk Factors, and Total MRI Brain Small-Vessel Disease Burden. Neurology, 83, 1228-1234. https://doi.org/10.1212/WNL.0000000000000837 |
[24] | 黄一宁. 中国脑小血管病诊治共识[J]. 中华神经科杂志, 2015, 48(10): 838-844. |
[25] | Bogdan, A.R., Miyazawa, M., Hashimoto, K., et al. (2016) Regulators of Iron Homeostasis: New Players in Metabolism, Cell Death, and Disease. Trends in Biochemical Sciences, 41, 274-286. https://doi.org/10.1016/j.tibs.2015.11.012 |
[26] | Gaasch, J.A., Lockman, P.R., Geldenhuys, W.J., et al. (2007) Brain Iron Toxicity: Differential Responses of Astrocytes, Neurons, and Endothelial Cells. Neurochemical Research, 32, 1196-1208. https://doi.org/10.1007/s11064-007-9290-4 |
[27] | Oshiro, S., Morioka, M.S. and Kikuchi, M. (2011) Dysregulation of Iron Metabolism in Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis. Advances in Pharmacological and Pharmaceutical Sciences, 2011, Article ID: 378278. https://doi.org/10.1155/2011/378278 |
[28] | Pietracupa, S., Martin-Bastida, A. and Piccini, P. (2017) Iron Metabo-lism and Its Detection through MRI in Parkinsonian Disorders: A Systematic Review. Neurological Sciences, 38, 2095-2101.
https://doi.org/10.1007/s10072-017-3099-y |
[29] | Acosta-Cabronero, J., Cardenas-Blanco, A., Betts, M.J., et al. (2017) The Whole-Brain Pattern of Magnetic Susceptibility Perturbations in Parkinson’s Disease. Brain, 140, 118-131. https://doi.org/10.1093/brain/aww278 |
[30] | Chen, Q., Chen, Y., Zhang, Y., et al. (2019) Iron Deposition in Par-kinson’s Disease by Quantitative Susceptibility Mapping. BMC Neuroscience, 20, Article No. 23. https://doi.org/10.1186/s12868-019-0505-9 |
[31] | Wang, S.M., Fu, L.J., Duan, X.L., et al. (2010) Role of Hepcidin in Murine Brain Iron Metabolism. Cellular and Molecular Life Sciences, 67, 123-133. https://doi.org/10.1007/s00018-009-0167-3 |
[32] | Beard, J.L. and Connor, J.R. (2003) Iron Status and Neural Func-tioning. Annual Review of Nutrition, 23, 41-58.
https://doi.org/10.1146/annurev.nutr.23.020102.075739 |
[33] | Lonzoff, B. and Brittenham, G.M. (1986) Behavioral Aspects of Iron Deficiency. Progress in Hematology, 14, 23-53. |
[34] | Gebril, O.H., Simpson, J.E., Kirby, J., et al. (2011) Brain Iron Dysregulation and the Risk of Ageing White Matter Lesions. NeuroMolecular Medicine, 13, 289-299. https://doi.org/10.1007/s12017-011-8161-y |
[35] | Fairweather-Tait, S.J., Wawer, A.A., Gillings, R., et al. (2014) Iron Status in the Elderly. Mechanisms of Ageing and Development, 136-137, 22-28. https://doi.org/10.1016/j.mad.2013.11.005 |
[36] | Harman, D. (1956) Aging: A Theory Based on Free Radical and Radiation Chemistry. Journal of Gerontology, 11, 298-300. https://doi.org/10.1093/geronj/11.3.298 |
[37] | Fredriksson, A., Schroder, N., Eriksson, P., Izquierdo, I. and Archer, T. (2000) Maze Learning and Motor Activity Deficits in Adult Mice Induced by Iron Exposure during a Critical Postnatal Period. Developmental Brain Research, 119, 65-74. https://doi.org/10.1016/S0165-3806(99)00160-1 |
[38] | de Lima, M.N., Presti-Torres, J., Caldana, F., Grazziotin, M.M., Scalco, F.S., et al. (2007) Desferoxamine Reverses Neonatal Iron-Induced Recognition Memory Impairment in Rats. European Journal of Pharmacology, 570, 111-114.
https://doi.org/10.1016/j.ejphar.2007.06.002 |
[39] | Li, Y., Kim, J., Buckett, P.D., Bohlke, M., Maher, T.J., et al. (2011) Severe Postnatal Iron Deficiency Alters Emotional Behavior and Dopamine Levels in the Prefrontal Cortex of Young Male Rats. The Journal of Nutrition, 141, 2133-2138. https://doi.org/10.3945/jn.111.145946 |
[40] | Knight, J.A. (2000) The Biochemistry of Aging. Advances in Clinical Chemistry, 35, 1-62.
https://doi.org/10.1016/S0065-2423(01)35014-X |
[41] | Georgieff, M.K. (2017) Iron Assessment to Protect the De-veloping Brain. The American Journal of Clinical Nutrition, 106, 1588s-1593s. https://doi.org/10.3945/ajcn.117.155846 |
[42] | Ward, R.J. and Crichton, R.R. (2019) Ironing out the Brain. In: Es-sential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic, Met Ions Life Sci, 19. https://doi.org/10.1515/9783110527872-004 |
[43] | Manza, P., Wiers, C.E., Shokri-Kojori, E., et al. (2020) Brain Network Segregation and Glucose Energy Utilization: Relevance for Age-Related Differences in Cognitive Function. Cerebral Cortex, 30, 5930-5942.
https://doi.org/10.1093/cercor/bhaa167 |
[44] | 李思瑶, 何慧瑾, 冯晓源, 等. 磁敏感加权成像相位值评估阿尔茨海默病脑内铁沉积[J]. 中国医学影像技术, 2011, 27(4): 698-701. |
[45] | 王波, 戴敏方, 王云勇, 等. 帕金森病脑内铁沉积的SWI定量研究[J]. 放射学实践, 2012, 27(11): 1174-1179. |
[46] | Liu, C., Li, C., Yang, J., et al. (2015) Char-acterizing Brain Iron Deposition in Subcortical Ischemic Vascular Dementia Using Susceptibility-Weighted Imaging: An in Vivo MR Study. Behavioural Brain Research, 288, 33-38.
https://doi.org/10.1016/j.bbr.2015.04.003 |
[47] | Li, J., Nguyen, T.D., Zhang, Q., et al. (2022) Cerebral Microbleeds Are Associated with Increased Brain Iron and Cognitive Impairment in Patients with Cerebral Small Vessel Disease: A Quantitative Susceptibility Mapping Study. Journal of Magnetic Resonance Imaging, Early View. https://doi.org/10.1002/jmri.28092 |
[48] | De La Fuente, M. (2002) Effects of Antioxidants on Immune System Age-ing. European Journal of Clinical Nutrition, 56, S5-S8. https://doi.org/10.1038/sj.ejcn.1601476 |
[49] | 秦俊法. 微量元素与血管性痴呆(1) [J]. 广东微量元素科学, 2015, 22(2): 60-70. |
[50] | 秦俊法, 李增禧. 微量元素与高血压II. 微量元素在血压调控中的作用及机制[J]. 广东微量元素科学, 2003(8): 1-16. |
[51] | Guo, L.N., Yang, Y.Z. and Feng, Y.Z. (2018) Serum and Salivary Ferritin and Hepcidin Levels in Patients with Chronic Periodontitis and Type 2 Diabetes Mellitus. BMC Oral Health, 18, Article No. 63.
https://doi.org/10.1186/s12903-018-0524-4 |
[52] | 江艳柳, 周农. 脑小血管病血浆铁蛋白及纤维蛋白原与D-二聚体的变化及其意义[J]. 中国基层医药, 2014, 21(10): 1463-1465. |
[53] | 徐武平, 张新华, 王桂珍, 等. 血管性痴呆患者红细胞内微量元素的变化[J]. 脑与神经疾病杂志, 2000(6): 346-348. |
[54] | 李周玲, 吕雄胜. 血红蛋白对血管性认知功能障碍患者氧化应激分析[J]. 心脑血管病防治, 2018, 18(2): 152-154. |
[55] | Jin, L., Wang, J., Zhao, L., et al. (2011) Decreased Serum Ceruloplasmin Levels Characteristically Aggravate Nigral Iron Deposition in Parkinson’s Disease. Brain, 134, 50-58. https://doi.org/10.1093/brain/awq319 |
[56] | Texel, S.J., Zhang, J., Camandola, S., et al. (2011) Ceruloplasmin Deficiency Reduces Levels of Iron and BDNF in the Cortex and Striatum of Young Mice and In-creases Their Vulnerability to Stroke. PLoS One, 6, e25077.
https://doi.org/10.1371/journal.pone.0025077 |
[57] | Rhodes, S.L., Buchanan, D.D., Ahmed, I., et al. (2014) Pooled Analysis of Iron-Related Genes in Parkinson’s Disease: Association with Transferrin. Neurobiology of Disease, 62, 172-178. https://doi.org/10.1016/j.nbd.2013.09.019 |
[58] | Daglas, M. and Adlard, P.A. (2018) The Involvement of Iron in Traumatic Brain Injury and Neurodegenerative Disease. Frontiers in Neuroscience, 12, 981. https://doi.org/10.3389/fnins.2018.00981 |
[59] | Khalaf, S., Ahmad, A.S., Chamara, K., et al. (2018) Unique Proper-ties Associated with the Brain Penetrant Iron Chelator HBED Reveal Remarkable Beneficial Effects after Brain Trauma. Journal of Neurotrauma, 36, 43-53.
https://doi.org/10.1089/neu.2017.5617 |
[60] | Chen, J., Marks, E., Lai, B., et al. (2013) Iron Accumulates in Hun-tington’s Disease Neurons: Protection by Deferoxamine. PLoS One, 8, e77023. https://doi.org/10.1371/journal.pone.0077023 |
[61] | Sripetchwandee, J., Khamseekaew, J., Svasti, S., et al. (2019) Deferiprone and Efonidipine Mitigated Iron-Overload Induced Neurotoxicity in Wild-Type and Thalassemic Mice. Life Sciences, 239, 116878.
https://doi.org/10.1016/j.lfs.2019.116878 |
[62] | Skouta, R., Dixon, S.J., Wang, J., et al. (2014) Ferrostatins Inhibit Oxidative Lipid Damage and Cell Death in Diverse Disease Models. Journal of the American Chemical Society, 136, 4551-4556. https://doi.org/10.1021/ja411006a |
[63] | Xie, B.S., Wang, Y.Q., Lin, Y., et al. (2019) Inhibition of Fer-roptosis Attenuates Tissue Damage and Improves Long-Term Outcomes after Traumatic Brain Injury in Mice. CNS Neuroscience & Therapeutics, 25, 465-475.
https://doi.org/10.1111/cns.13069 |