This paper presents the current knowledge about the reconstruction of dinosaur heads. To reconstruct the dinosaur head, several features and functions of the head must be studied, namely osteology, musculature and soft tissue of the head, cranial kinesis, craniodental biomechanical characteristics, posterior part of the cranium, skin, and others. The main steps and points resulting from the study are the following. Firstly, the osteological remains of the head are studied for reconstruction according to the correct size and form in comparison with known remains belonging to the same family in case the remains were not complete. As the dinosaurs did not have facial muscles, their skin was pressed directly to the skull. The skin covering the large openings in front of the orbits of many dinosaurs probably bulged gently outward, and similarly, the jaw muscles bulged gently from the skull openings. Also, an investigation is performed to decide if sauropods were terrestrial or aquatic animals. Then, the individual characteristics of the head are examined in detail. These concern: 1) endocranial cast and nerves, 2) nostrils position, 3) the existence and kind of cheeks and lips, 4) Teeth types and function, 5) the palate shape and skin covering, 6) hyoid apparatus and tongues, 7) the details of the ear, 8) sclerotic rings and eyes, 9) skin and color. With the knowledge gathered about the various parts of the head in mind, decisions are made about the Amargasaurus (a sauropod) head in order to reconstruct a 3D, actual size head, as a worked example. Finally, the reconstruction procedure is described in detail.
References
[1]
Florides, G.A. and Christodoulides, P. (2021) On Dinosaur Reconstruction: An Introduction to Important Topics of Paleontology and Dinosaurs. Open Journal of Geology, 11, 525-571. https://doi.org/10.4236/ojg.2021.1110028
[2]
Florides, G.A. and Christodoulides, P. (2021) On Dinosaur Reconstruction: Posture of Dinosaurs. Open Journal of Geology, 11, 756-793.
https://doi.org/10.4236/ojg.2021.1112037
[3]
Carpenter, K. (1992) Tyrannosaurids (Dinosauria) of Asia and North America. In: Mateer, N.J. and Chen, P.-J., Eds., Aspects of Nonmarine Cretaceous Geology, China Ocean Press, Beijing, 250-268.
[4]
Dodson, P. (1998) The Horned Dinosaurs: A Natural History. Princeton University Press, Princeton.
[5]
Gates, T.A., Evans, D.C. and Sertich, J.J.W. (2021) Description and Rediagnosis of the Crested Hadrosaurid (Ornithopoda) Dinosaur Parasaurolophus cyrtocristatus on the Basis of New Cranial Remains. PeerJ, 9, e10669.
https://doi.org/10.7717/peerj.10669
[6]
Galton, P.M. (1970) The Posture of Hadrosaurian Dinosaurs. Journal of Paleontology, 44, 464-473. https://www.jstor.org/stable/1302582?seq=1&cid=pdf
[7]
Horner, J.R. and Goodwin, M.B. (2009) Extreme Cranial Ontogeny in the Upper Cretaceous Dinosaur Pachycephalosaurus. PLoS ONE, 4, e7626.
https://doi.org/10.1371/journal.pone.0007626
[8]
Carpenter, K. (1997) Agonistic Behavior in Pachycephalosaurs (Ornithischia, Dinosauria); a New Look at Head-Butting Behavior. Contributions to Geology, 32, 19-25.
[9]
Seebacher, F. (2001) A New Method to Calculate Allometric Length-Mass Relationships of Dinosaurs. Journal of Vertebrate Paleontology, 21, 51-60.
https://doi.org/10.1671/0272-4634(2001)021[0051:ANMTCA]2.0.CO;2
[10]
Taylor, M.P. and Wedel, M.J. (2016) The Neck of Barosaurus: Longer, Wider and Weirder than Those of Diplodocus and Other Diplodocines. PeerJ Preprints, 4, e67v2. https://doi.org/10.7287/peerj.preprints.67v2
[11]
Holliday, C.M. (2009) New Insights into Dinosaur Jaw Muscle Anatomy. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 292, 1246-1265. https://doi.org/10.1002/ar.20982
[12]
Holliday, C.M., Porter, W.R., Vliet, K.A. and Witmer, L.M. (2020) The Frontoparietal Fossa and Dorsotemporal Fenestra of Archosaurs and Their Significance for Interpretations of Vascular and Muscular Anatomy in Dinosaurs. The Anatomical Record, 303, 1060-1074. https://doi.org/10.1002/ar.24218
[13]
Holliday, C.M. and Witmer, L.M. (2008) Cranial Kinesis in Dinosaurs: Intracranial Joints, Protractor Muscles, and Their Significance for Cranial Evolution and Function in Diapsids. Journal of Vertebrate Paleontology, 28, 1073-1088.
https://doi.org/10.1671/0272-4634-28.4.1073
[14]
Button, D.J., Rayfield, E.J. and Barrett, P.M. (2014) Cranial Biomechanics Underpins High Sauropod Diversity in Resource-Poor Environments. Proceedings of the Royal Society B: Biological Sciences, 281, Article ID: 20142114.
https://doi.org/10.1098/rspb.2014.2114
[15]
Nabavizadeh, A. (2020) Cranial Musculature in Herbivorous Dinosaurs: A Survey of Reconstructed Anatomical Diversity and Feeding Mechanisms. The Anatomical Record, 303, 1104-1145. https://doi.org/10.1002/ar.24283
[16]
Snively, E. and Russell, A.P. (2007) Functional Variation of Neck Muscles and Their Relation to Feeding Style in Tyrannosauridae and Other Large Theropod Dinosaurs. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 290, 934-957. https://doi.org/10.1002/ar.20563
[17]
Snively, E., Cotton, J.R., Ridgely, R. and Witmer, L.M. (2013) Multibody Dynamics Model of Head and Neck Function in Allosaurus (Dinosauria, Theropoda). Palaeontologia Electronica, 16, 11A. https://doi.org/10.26879/338
[18]
Mazzetta, G.V., Cisilino, A.P., Blanco, R.E. and Calvo, N. (2009) Cranial Mechanics and Functional Interpretation of the Horned Carnivorous Dinosaur Carnotaurus sastrei. Journal of Vertebrate Paleontology, 29, 822-830.
https://doi.org/10.1671/039.029.0313
[19]
Bates, K.T. and Falkingham, P.L. (2012) Estimating Maximum Bite Performance in Tyrannosaurus rex Using Multi-Body Dynamics. Biology Letters, 8, 660-664.
https://doi.org/10.1098/rsbl.2012.0056
[20]
Evans, D.C., Ridgely, R. and Witmer, L.M. (2009) Endocranial Anatomy of Lambeosaurine Hadrosaurids (Dinosauria: Ornithischia): A Sensorineural Perspective on Cranial Crest Function. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 292, 1315-1337.
https://doi.org/10.1002/ar.20984
[21]
Witmer, L.M. and Ridgely, R.C. (2008) The Paranasal Air Sinuses of Predatory and Armored Dinosaurs (Archosauria: Theropoda and Ankylosauria) and Their Contribution to Cephalic Structure. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 291, 1362-1388.
https://doi.org/10.1002/ar.20794
[22]
Porter, W.R. and Witmer, L.M. (2020) Vascular Patterns in the Heads of Dinosaurs: Evidence for Blood Vessels, Sites of Thermal Exchange, and Their Role in Physiological Thermoregulatory Strategies. The Anatomical Record, 303, 1075-1103.
https://doi.org/10.1002/ar.24234
[23]
Witmer, L.M., Ridgely, R.C., Dufeau, D.L. and Semones, M.C. (2008) Using CT to Peer into the Past: 3D Visualization of the Brain and Ear Regions of Birds, Crocodiles, and Nonavian Dinosaurs. In: Endo, H. and Frey, R, Eds., Anatomical Imaging: Towards a New Morphology, Springer, Tokyo, 67-87.
https://doi.org/10.1007/978-4-431-76933-0_6
[24]
Witmer, L.M. and Ridgely, R.C. (2009) New Insights into the Brain, Braincase, and Ear Region of Tyrannosaurs (Dinosauria, Theropoda), with Implications for Sensory Organization and Behavior. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 292, 1266-1296.
https://doi.org/10.1002/ar.20983
[25]
Salgado, L. (1999) The Macroevolution of the Diplodocimorpha (Dinosauria; Sauropoda): A Developmental Model. Ameghiniana, 36, 203-216.
[26]
Wilson, J.A. and Sereno, P.C. (1998) Early Evolution and Higher-Level Phylogeny of Sauropod Dinosaurs. Journal of Vertebrate Paleontology, 18, 1-79.
https://doi.org/10.1080/02724634.1998.10011115
[27]
Salgado, L. and Bonaparte, J.F. (1991) A New Dicraeosaurid Sauropod, Amargasaurus cazaui gen. et. sp. nov., from the La Amarga Formation, Neocomian of Neuquen Province, Argentina. Ameghiniana, 28, 333-346.
[28]
Salgado, L. and Calvo, J.O. (1992) Cranial Osteology of Amargasurus cazaui Salgado & Bonaparte (Sauropoda, Dicraeosuridae) from the Neocomian of Patagonia. Ameghiniana, 29, 337-346.
[29]
Novas, F. (2009) The Age of Dinosaurs in South America. Indiana University Press, Bloomington.
[30]
Schwarz-Wings, D. (2012) The Skull of Dicraeosaurus hansemanni (Late Jurassic, Tendaguru/Tanzania). 10th Conference of the European Association of Vertebrate Palaeontologists, Teruel, 19-24 June 2012, Vol. 20, 235-236.
[31]
Janensch, W. (1936) Die Schadel der Sauropoden Brachiosaurus, Barosaurus und Dicraeo-saurus aus den Tendaguruschichten Deutsch-Ostafrikas (Schluß). Palaeontographica-Supplementbande, 3, 249-298.
[32]
Paulina Carabajal, A., Carballido, J.L. and Currie, P.J. (2014) Braincase, Neuroanatomy, and Neck Posture of Amargasaurus cazaui (Sauropoda, Dicraeosauridae) and Its Implications for Understanding Head Posture in Sauropods. Journal of Vertebrate Paleontology, 34, 870. https://doi.org/10.1080/02724634.2014.838174
[33]
Amargasaurus Skeleton Exhibited in Victoria Museum.
https://collections.museumsvictoria.com.au/specimens/1147189
[34]
Victoria Memorial Museum, Ottawa (2016) Amargasaurus Skeleton (Exhibited).
[35]
Whitlock, J.A. (2011) Inferences of Diplodocoid (Sauropoda: Dinosauria) Feeding Behavior from Snout Shape and Microwear Analyses. PLoS ONE, 6, e18304.
https://doi.org/10.1371/journal.pone.0018304
[36]
Nabavizadeh, A. (2020) New Reconstruction of Cranial Musculature in Ornithischian Dinosaurs: Implications for Feeding Mechanisms and Buccal Anatomy. The Anatomical Record, 303, 347-362. https://doi.org/10.1002/ar.23988
[37]
Senter, P.J. (1998) Jaw Muscle Configurations in Theropod Dinosaurs: Implications for the Evolution of Theropod Prey Handling.
[38]
Lautenschlager, S. (2015) Estimating Cranial Musculoskeletal Constraints in Theropod Dinosaurs. Royal Society Open Science, 2, Article ID: 150495.
https://doi.org/10.1098/rsos.150495
[39]
Holliday, C.M., Tsai, H.P., Skiljan, R.J., George, I.D. and Pathan, S. (2013) A 3D Interactive Model and Atlas of the Jaw Musculature of Alligator mississippiensis. PLoS ONE, 8, e62806. https://doi.org/10.1371/journal.pone.0062806
[40]
Lautenschlager, S., Bright, J.A. and Rayfield, E.J. (2014) Digital Dissection Using Contrast-Enhanced Computed Tomography Scanning to Elucidate Hard- and Soft-Tissue Anatomy in the Common Buzzard Buteo buteo. Journal of Anatomy, 224, 412-431. https://doi.org/10.1111/joa.12153
[41]
Paul, G.S. (2010) The Princeton Field Guide to Dinosaurs. Princeton University Press, Princeton. https://doi.org/10.1515/9781400836154
Ishigaki, S. (1989) Footprints of Swimming Sauropods from Morocco. 1st International Symposium on Dinosaur Tracks and Traces 1986, Albuquerque NM, USA, May 23-24, 83-86.
[44]
Henderson, D.M. (2004) Tipsy Punters: Sauropod Dinosaur Pneumaticity, Buoyancy and Aquatic Habits. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271, S180-S183. https://doi.org/10.1098/rsbl.2003.0136
[45]
Wedel, M.J. (2003) The Evolution of Vertebral Pneumaticity in Sauropod Dinosaurs. Journal of Vertebrate Paleontology, 23, 344-357.
https://doi.org/10.1671/0272-4634(2003)023[0344:TEOVPI]2.0.CO;2
[46]
Perry, S.F., Breuer, T. and Pajor, N. (2011) Structure and Function of the Sauropod Respiratory System. In: Klein, N., Remes, K., Gee, T.C. and Sander, P.M., Eds., Biology of the Sauropod Dinosaurs: Understanding the Life of Giants, Indiana University Press, Bloomington, 83-93.
[47]
Kirkland, J.I. and Carpenter, K. (1994) North America’s First Pre-Cretaceous Ankylosaur (Dinosauria) from the Upper Jurassic Morrison Formation of Western Colorado. Brigham Young University Geology Studies, 40, 25-42.
[48]
Chin, K. and Kirkland, J.I. (1998) Probable Herbivore Coprolites from the Upper Jurassic Mygatt-Moore Quarry, Western Colorado. Modern Geology, 23, 249-275.
[49]
Ghosh, P., Bhattacharya, S.K., Sahni, A., Kar, R.K., Mohabey, D.M. and Ambwani, K. (2003) Dinosaur Coprolites from the Late Cretaceous (Maastrichtian) Lameta Formation of India: Isotopic and Other Markers Suggesting a C3Plant Diet. Cretaceous Research, 24, 743-750. https://doi.org/10.1016/j.cretres.2003.08.002
[50]
Fastovsky, D.E., Weishampel, D.B. and Sibbick, J. (2009) Dinosaurs: A Concise Natural History. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511805189
[51]
Bakker, R.T. (1986) The Dinosaur Heresies. William Morrow, Inc., New York.
Christiansen, P. (2000) Feeding Mechanisms of the Sauropod Dinosaurs Brachiosaurus, Camarasaurus, Diplodocus and Dicraeosaurus. Historical Biology, 14, 137-152. https://doi.org/10.1080/10292380009380563
[54]
Credit: NOAA Fisheries. Rare Blue Whale Sighting in the Gulf of Alaska.
https://www.fisheries.noaa.gov/species/blue-whale#conservation-management
Knoll, F., Galton, P.M. and López-Antonanzas, R. (2006)Paleoneurological Evidence against a Proboscis in the Sauropod Dinosaur Diplodocus. Geobios, 39, 215-221. https://doi.org/10.1016/j.geobios.2004.11.005
[57]
Sanvito, S., Galimberti, F. and Miller, E.H. (2007) Having a Big Nose: Structure, Ontogeny, and Function of the Elephant Seal Proboscis. Canadian Journal of Zoology, 85, 207-220. https://doi.org/10.1139/z06-193
[58]
Witmer, L.M. (2001) Nostril Position in Dinosaurs and Other Vertebrates and Its Significance for Nasal Function. Science (1979), 293, 850-853.
https://doi.org/10.1126/science.1062681
[59]
Tsirides Foundation—Museum of World Natural History (2014) Tyrannosaurus Skull (Asia). Exhibition.
http://www.tsiridesfoundation.com/cgibin/hweb?-A=530&-V=museum
[60]
S.I.-D. of Paleobiology. Michael Brett-Surman. Diplodocus longus Marsh, 1878. USNM V 2672. National Museum of Natural History, Smithsonian Institution.
http://n2t.net/ark:/65665/32932c4b7-3c7d-43ba-be4b-72f24caf2555
[61]
Upchurch, P. and Barrett, P. (2005) The Evolution of Sauropod Feeding Mechanisms. In: Hans-Dieter, S., Ed., Evolution of Herbivory in Terrestrial Vertebrates: Perspectives from the Fossil Record, Cambridge University Press, Cambridge, 79-122.
[62]
Morhardt, A.C. (2009) Dinosaur Smiles: Do the Texture and Morphology of the Premaxilla, Maxilla, and Dentary Bones of Sauropsids Provide Osteological Correlates for Inferring Extra-Oral Structures Reliably in Dinosaurs?
[63]
Wiersma, K. and Sander, P.M. (2017) The Dentition of a Well-Preserved Specimen of Camarasaurus sp.: Implications for Function, Tooth Replacement, Soft Part Reconstruction, and Food Intake. Palaontologische Zeitschrift, 91, 145-161.
https://doi.org/10.1007/s12542-016-0332-6
[64]
(2011) Camarasaurus Specimen SMA 0002 Exhibited in the Sauriermuseum Aathal, Switzerland. Credit: Sauriermuseum Aathal, Switzerland. National Science Foundation, Courtesy. https://www.nsf.gov/news/mmg/mmg_disp.jsp?med_id=69665
[65]
Sereno, P.C., et al. (2010) A New Psittacosaur from Inner Mongolia and the Parrot-Like Structure and Function of the Psittacosaur Skull. Proceedings of the Royal Society B: Biological Sciences, 277, 199-209. https://doi.org/10.1098/rspb.2009.0691
[66]
Mallon, J.C. and Anderson, J.S. (2014) The Functional and Palaeoecological Implications of Tooth Morphology and Wear for the Megaherbivorous Dinosaurs from the Dinosaur Park Formation (Upper Campanian) of Alberta, Canada. PLoS ONE, 9, e98605. https://doi.org/10.1371/journal.pone.0098605
[67]
Holwerda, F.M., Pol, D. and Rauhut, O.W.M. (2015) Using Dental Enamel Wrinkling to Define Sauropod Tooth Morphotypes from the Canadón Asfalto Formation, Patagonia, Argentina. PLoS ONE, 10, e0118100.
https://doi.org/10.1371/journal.pone.0118100
[68]
Drumheller, S.K., McHugh, J.B., Kane, M., Riedel, A. and D’Amore, D.C. (2020) High Frequencies of Theropod Bite Marks Provide Evidence for Feeding, Scavenging, and Possible Cannibalism in a Stressed Late Jurassic Ecosystem. PLoS ONE, 15, e0233115. https://doi.org/10.1371/journal.pone.0233115
[69]
Barrett, P.M. and Upchurch, P. (1994) Feeding Mechanisms of Diplodocus. Gaia: Revistade Geociencias, Museu Nacionalde Historia Natural. University of Lisbon, 10, 195-204.
[70]
Young, M.T., et al. (2012) Cranial Biomechanics of Diplodocus (Dinosauria, Sauropoda): Testing Hypotheses of Feeding Behaviour in an Extinct Megaherbivore. Naturwissenschaften, 99, 637-643. https://doi.org/10.1007/s00114-012-0944-y
[71]
Dicraeosaurus Hansemann Restored Teeth. Museum für Naturkunde, Berlin.
https://www.museumfuernaturkunde.berlin/en/museum/exhibitions/world-dinosaurs
[72]
Dinosaur National Monument. Sauropod Dinosaur Teeth from the Jurassic of Utah, USA. DNM 974, Diplodocus longus Marsh, 1878. Credit: James St. John, Utah, USA. https://flickr.com/photos/jsjgeology/48695689217
[73]
D’Emic, M.D., Whitlock, J.A., Smith, K.M., Fisher, D.C. and Wilson, J.A. (2013) Evolution of High Tooth Replacement Rates in Sauropod Dinosaurs. PLoS ONE, 8, e69235. https://doi.org/10.1371/journal.pone.0069235
[74]
Kosch, J.C.D. and Zanno, L.E. (2020) Sampling Impacts the Assessment of Tooth Growth and Replacement Rates in Archosaurs: Implications for Paleontological Studies. PeerJ, 8, e9918. https://doi.org/10.7717/peerj.9918
[75]
(2019) Tyrannosaur Lower Jaw. Morian Hall of Paleontology. Houston Museum of Natural Science.
https://www.hmns.org/exhibits/permanent-exhibitions/the-morian-hall-of-paleontology
[76]
B. S. C. ELTE TTK Biológiai Intézet. Atlas of Animal Anatomy and Histology.
http://bszm.elte.hu/anatomy
[77]
Tutkey, E. Komodo Dragon.pinterest.com.
https://www.pinterest.com/pin/447686019216960376
Bourke, J.M., Porter, W.R. and Witmer, L.M. (2018) Convoluted Nasal Passages Function as Efficient Heat Exchangers in Ankylosaurs (Dinosauria: Ornithischia: Thyreophora). PLoS ONE, 13, e0207381.
https://doi.org/10.1371/journal.pone.0207381
[80]
Bourke, J.M., et al. (2014) Breathing Life into Dinosaurs: Tackling Challenges of Soft-Tissue Restoration and Nasal Airflow in Extinct Species. The Anatomical Record, 297, 2148-2186. https://doi.org/10.1002/ar.23046
[81]
Evans, D.C., Ridgely, R. and Witmer, L.M. (2009) Endocranial Anatomy of Lambeosaurine Hadrosaurids (Dinosauria: Ornithischia): A Sensorineural Perspective on Cranial Crest Function. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 292, 1315-1337.
https://doi.org/10.1002/ar.20984
[82]
Li, Z., Zhou, Z. and Clarke, J.A. (2018) Convergent Evolution of a Mobile Bony Tongue in Flighted Dinosaurs and Pterosaurs. PLoS ONE, 13, e0198078.
https://doi.org/10.1371/journal.pone.0198078
[83]
Homberger, D.G. and Meyers, R.A. (1989) Morphology of the Lingual Apparatus of the Domestic Chicken, Gallus gallus, with Special Attention to the Structure of the Fasciae. American Journal of Anatomy, 186, 217-257.
https://doi.org/10.1002/aja.1001860302
[84]
Tomlinson, C.A.B. (2000) Feeding in Paleognathous Birds. In: Schwenk, K., Ed., Feeding Form, Function, and Evolution in Tetrapod Vertebrates, Academic Press, Cambridge, 359-394. https://doi.org/10.1016/B978-012632590-4/50012-5
[85]
Owen, R. (1866) On the Anatomy of Vertebrates, Birds and Mammals, II. Longmans, Green and Co., London. https://doi.org/10.5962/bhl.title.33654
[86]
Hill, R.V., D’Emic, M.D., Bever, G.S. and Norell, M.A. (2015) A Complex Hyobranchial Apparatus in a Cretaceous Dinosaur and the Antiquity of Avian Paraglossalia. Zoological Journal of the Linnean Society, 175, 892-909.
https://doi.org/10.1111/zoj.12293
[87]
Schwenk, K. (2000) Feeding in Lepidosaurs. In: Schwenk, K., Ed., Feeding Form, Function, and Evolution in Tetrapod Vertebrates, 2nd Edition, Academic Press, Cambridge, 175-291. https://doi.org/10.1016/B978-012632590-4/50009-5
[88]
Zaher, H., et al. (2011) A Complete Skull of an Early Cretaceous Sauropod and the Evolution of Advanced Titanosaurians. PLoS ONE, 6, e16663.
https://doi.org/10.1371/journal.pone.0016663
[89]
Gleich, O., Fischer, F.P., Koppl, C. and Manley, G.A. (2004) Hearing Organ Evolution and Specialization: Archosaurs. In: Manley, G., Popper, A. and Fay, R., Eds., Evolution of the Vertebrate Auditory System, Springer, Berlin, 224-255.
https://doi.org/10.1007/978-1-4419-8957-4_8
[90]
Galton, P.M. and Knoll, F. (2006) A Saurischian Dinosaur Braincase from the Middle Jurassic (Bathonian) near Oxford, England: From the Theropod Megalosaurus or the Sauropod Cetiosaurus. Geological Magazine, 143, 905-921.
https://doi.org/10.1017/S0016756806002561
[91]
Weishampel, D.B., Dodson, P. and Osmólska, H. (2004) The Dinosauria. Second Edition, University of California Press, Oakland.
https://doi.org/10.1525/9780520941434
[92]
McGowan, C. (1991) Dinosaurs, Spitfires, and Sea Dragons. Harvard University Press, Cambridge.
[93]
Knoll, F., Witmer, L.M., Ortega, F., Ridgely, R.C. and Schwarz-Wings, D. (2012) The Braincase of the Basal Sauropod Dinosaur Spinophorosaurus and 3D Reconstructions of the Cranial Endocast and Inner Ear. PLoS ONE, 7, e30060.
https://doi.org/10.1371/journal.pone.0030060
[94]
Necker, R. (1999) The Avian Ear and Hearing. In: Whittow, G.C., Ed., Sturkie’s Avian Physiology, Academic Press, Cambridge, 21-38.
https://doi.org/10.1016/B978-012747605-6/50003-1
Tanaka, K. and Smith, C.A. (1978) Structure of the Chicken’s Inner Ear: SEM and TEM Study. American Journal of Anatomy, 153, 251-272.
https://doi.org/10.1002/aja.1001530206
[97]
Witmer, L.M. and Ridgely, R.C. (2009) New Insights into the Brain, Braincase, and Ear Region of Tyrannosaurs (Dinosauria, Theropoda), with Implications for Sensory Organization and Behavior. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 292, 1266-1296.
https://doi.org/10.1002/ar.20983
[98]
Sanders, R.D. and Gillig, P.M. (2010) Cranial Nerve VIII: Hearing and Vestibular Functions. Psychiatry (Edgmont), 7, 17-22.
Royal Ontario Museum, Toronto.
https://www.rom.on.ca/en/exhibitions-galleries/galleries/natural-history
[101]
Museum of Evolution, Warsaw. https://muzeumewolucji.pl/?lang=pl
[102]
Nowinski, A. (1971) Nemegtosaurus mongoliensis n. gen., n. sp. (Sauropoda) from the Uppermost Cretaceous of Mongolia. Palaeontologia Polonica, 25, 57-81.
Czerkas, S.A. (1994) The History and Interpretation of Sauropod Skin Impressions. Gaia, 10, 173-182.
[105]
Siber, H.J. and Mockli, U. (2009) The Stegosaurs of the Sauriermuseum Aathal.
https://www.sauriermuseum.ch
[106]
Czerkas, S.A. (1992) Discovery of Dermal Spines Reveals a New Look for Sauropod Dinosaurs. Geology, 20, 1068.
https://doi.org/10.1130/0091-7613(1992)020<1068:DODSRA>2.3.CO;2
[107]
Mateus, O. and Milàn, J. (2010) A Diverse Upper Jurassic Dinosaur Ichnofauna from Central-West Portugal. Lethaia, 43, 245-257.
https://doi.org/10.1111/j.1502-3931.2009.00190.x
[108]
Romano, M. and Whyte, M.A. (2012) Information on the Foot Morphology, Pedal Skin Texture and Limb Dynamics of Sauropods: Evidence from the Ichnological Record of the Middle Jurassic of the Cleveland Basin, Yorkshire, UK. Zubia, 30, 1-92.
[109]
Bell, P.R. (2012) Standardized Terminology and Potential Taxonomic Utility for Hadrosaurid Skin Impressions: A Case Study for Saurolophus from Canada and Mongolia. PLoS ONE, 7, e31295. https://doi.org/10.1371/journal.pone.0031295
[110]
Chiappe, L.M. and Dingus, L. (2001) Walking on Eggs: The Astonishing Discovery of Thousands of Dinosaur Eggs in the Badlands of Patagonia. Scribner, New York.
[111]
Zhang, F., et al. (2010) Fossilized Melanosomes and the Colour of Cretaceous Dinosaurs and Birds. Nature, 463, 1075-1078. https://doi.org/10.1038/nature08740
[112]
Vinther, J., Briggs, D.E.G., Prum, R.O. and Saranathan, V. (2008) The Colour of Fossil Feathers. Biology Letters, 4, 522-525. https://doi.org/10.1098/rsbl.2008.0302
[113]
T. C. Royal Ontario Museum. Skin Impressions of Sauropods.
https://www.rom.on.ca/en
[114]
Timber Ridge Gifts (2019) Make a 3D Silicone Mold Out of Anything! Easy DIY Mold Making—DIY Your Own Molds! Mould.
https://www.youtube.com/watch?v=NgTv9konmL4
[115]
Creative Cat (2021) Homemade Silicon Molds for Art and Craft/DIY Silicon Molds for Clay and Resin/Silicon Mold Making.
https://www.youtube.com/watch?v=fl4XodfvV3g
[116]
CraftsWithKripa (2020) How to Make a Mold for Resin from Hot Glue. DIY Resin Hacks. https://www.youtube.com/watch?v=m9TYMH0NGCM
[117]
Adobe Photoshop. https://www.adobe.com
[118]
Image to Lithophane. http://3dp.rocks/lithophane
[119]
Autodesk Meshmixer. http://www.meshmixer.com
[120]
Fogas Andrea Petra. Green Iguana Reptile Large Wallpaper Portrait.
https://pixabay.com/photos/green-iguana-reptile-large-3792472