|
PI3K/AKT信号通路在缺血性脑卒中中的保护作用
|
Abstract:
脑梗死的高发病率、高死亡率、高致残率和高复发率,为人类的生命健康带来了极大的危害,其损伤机制包括细胞凋亡、钙超载、活性氧过度生成、炎症反应和兴奋性氨基酸毒性作用等多种复杂病理机制。PI3K/AKT信号通路作为近些年研究较多的信号通路之一,与缺血性脑卒中的发生发展密切相关。本文就近些年PI3K/AKT信号通路在缺血性脑卒中中的作用机制进行综述,为探索缺血性脑卒中诊疗提供新的思路。
High incidence, high mortality, high disability and high recurrence rates of cerebral infarction have brought great harm to human life and health, and its injury mechanism involves a variety of com-plex pathological mechanisms, including apoptosis, calcium overload, excessive production of reac-tive oxygen species, inflammatory reaction and toxic effects of excitatory amino acids. As one of the most studied signaling pathways in recent years, PI3K/AKT signaling pathway is closely related to the occurrence and development of ischemic stroke. This paper reviews the mechanism of PI3K/AKT signaling pathway in ischemic stroke in recent years, providing new ideas for exploring the diagnosis and treatment of ischemic stroke.
[1] | GBD 2019 Diseases and Injuries Collaborators (2020) Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet, 396, 1204- 1222. https://doi.org/10.1016/S0140-6736(20)30925-9 |
[2] | Hu, L., Fang, R. and Guo, M. (2020) Knockdown of lncRNA SNHG1 Alleviates Oxygen-Glucose Deprivation/ Reperfusion-Induced Cell Death by Serving as a ceRNA for miR-424 in SH-SY5Y Cells. Neurological Research, 42, 47-54. https://doi.org/10.1080/01616412.2019.1672389 |
[3] | Nitulescu, G.M., Van De Venter, M., Nitulescu, G., Ungurianu, A., Juzenas, P., Peng, Q., et al. (2018) The Akt Pathway in Oncology Therapy and beyond (Review). In-ternational Journal of Oncology, 53, 2319-2331.
https://doi.org/10.3892/ijo.2018.4597 |
[4] | Sugiyama, M.G., Fairn GD and Antonescu, C.N. (2019) Akt-ing up Justbout Everywhere: Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase Signaling. Frontiers in Cell and Developmental Biology, 7, Article No. 70. https://doi.org/10.3389/fcell.2019.00070 |
[5] | 陈海, 王建. PI3K/AKT信号通路在缺血性脑卒中后细胞程序性死亡中的研究进展[J]. 中药药理与临床, 2022, 38(2): 247-252. https://doi.org/10.13412/j.cnki.zyyl.20210806.002 |
[6] | Diao, M.Y., Zhu, Y., Yang, J., Xi, S.S., Wen, X., Gu, Q., et al. (2020) Hypothermia Protects Neurons against Ischemia/Reperfusion-Induced Pyroptosis via m6A-Mediated Activation of PTEN and the PI3K/Akt/GSK-3β Signaling Pathway. Brain Research Bulletin, 159, 25-31. https://doi.org/10.1016/j.brainresbull.2020.03.011 |
[7] | Yang, S., Wang, H., Yang, Y., Wang, R., Wang, Y., Wu, C., et al. (2019) Baicalein Administered in the Subacute Phase Ameliorates Ischemia-Reperfusion-Induced Brain Injury by Reducing Neuroinflammation and Neuronal Damage. Biomedicine & Pharmacotherapy, 117, Article ID: 109102. https://doi.org/10.1016/j.biopha.2019.109102 |
[8] | Xu, L., Yang, Y. and Chen, J. (2020) The Role of Reactive Oxygen Species in Cognitive Impairment Associated with Sleep Apnea. Experimental and Therapeutic Medicine, 20, Article No. 4. https://doi.org/10.3892/etm.2020.9132 |
[9] | Prakash, R., Fauzia, E., Siddiqui, A.J., Yadav, S.K., Kumari, N., Shams, M.T., et al. (2022) Oxidative Stress-Induced Autophagy Compromises Stem Cell viability. Stem Cells, 40, sxac018. https://doi.org/10.1093/stmcls/sxac018 |
[10] | 段晋宁, 向常清, 钱爱红, 李进, 陈修全, 韩永峰, 等. 珠子参皂苷通过激活 PI3K/Akt通路对小鼠脑缺血再灌注损伤的保护作用研究[J]. 中国临床药理学与治疗学, 2019, 24(7): 750-758. |
[11] | Deng, H.F., Wang, X.L., Sun, H. and Xiao, X.Z. (2017) Puerarin Inhibits Expression of Tissue Factor Induced by Oxidative low-Density Lipoprotein through Activating the PI3K/Akt/eNOS Pathway and Inhibiting Activation of ERK1/2 and NF-κB. Life Sciences, 191, 115-121. https://doi.org/10.1016/j.lfs.2017.10.018 |
[12] | Guo, S., Mangal, R., Dandu, C., Geng, X. and Ding, Y. (2022) Role of Forkhead Box Protein O1 (FoxO1) in Stroke: A Literature Review. Aging and Disease, 13, 521-533. |
[13] | Xu, S., Lu, J., Shao, A., Zhang, J.H. and Zhang, J. (2020) Glial Cells: Role of the Immune Response in Ischemic Stroke. Frontiers in Immunology, 11, Article No. 294. https://doi.org/10.3389/fimmu.2020.00294 |
[14] | Li, Y., Sun, J., Gu, L. and Gao, X. (2020) Protective Effect of CTRP6 on Cerebral Ischemia/Reperfusion Injury by Attenuating In-flammation, Oxidative Stress and Apoptosis in PC12 Cells. Molecular medicine reports, 22, 344-352.
https://doi.org/10.3892/mmr.2020.11108 |
[15] | Wang, Y., Huang, Y., Xu, Y., Ruan, W., Wang, H., Zhang, Y., et al. (2018) A Dual AMPK/Nrf2 Activator Reduces Brain Inflammation After Stroke by Enhancing Microglia M2 Polariza-tion. Antioxidants & Redox Signaling, 28, 141-163.
https://doi.org/10.1089/ars.2017.7003 |
[16] | 胥虹贝, 罗勇. 髓样细胞激活受体2调控氧糖剥夺/复氧模型小鼠小胶质细胞向M2型极化[J]. 解剖学报, 2021, 52(3): 329-336. https://doi.org/10.16098/j.issn.0529-1356.2021.03.001 |
[17] | 汤博, 王霞, 吴福建, 姜玉莹. 头针疗法对缺血性中风大鼠脑神经元的保护作用及对PI3K/AKt通路的影响[J]. 西安交通大学学报(医学版), 2022, 43(2): 213-219. |
[18] | Peng, H., Yang, H., Xiang, X. and Li, S. (2020) ΜicroRNA-221 Participates in Cerebral Ischemic Stroke by Modulating Endothelial Cell Function by Regulating the PTEN/PI3K/AKT Pathway. Experimental and Therapeutic Medicine, 19, 443-450. https://doi.org/10.3892/etm.2019.8263 |
[19] | Chen, J., Zhang, X., Liu, X., Zhang, C., Shang, W., Xue, J., et al. (2019) Ginsenoside Rg1 Promotes Cerebral Angiogenesis via the PI3K/Akt/mTOR Signaling Pathway in Ischemic Mice. European Journal of Pharmacology, 856, Article ID: 172418. https://doi.org/10.1016/j.ejphar.2019.172418 |
[20] | Haley, M.J. and Lawrence, C.B. (2017) The Blood-Brain Barrier after Stroke: Structural Studies and the Role of Transcytotic Vesicles. Journal of Cerebral Blood Flow and Metabolism, 37, 456-470.
https://doi.org/10.1177/0271678X16629976 |
[21] | Sun, M.S., Jin, H., Sun, X., Huang, S., Zhang, F.L., Guo, Z.N., et al. (2018) Free Radical Damage in Ischemia-Reper- fusion Injury: An Obstacle in Acute Ischemic Stroke after Re-vascularization Therapy. Oxidative Medicine and Cellular Longevity, 2018, Article ID: 3804979. https://doi.org/10.1155/2018/3804979 |
[22] | Sun, P., Hamblin, M.H. and Yin, K.J. (2022) Non-Coding RNAs in the Regulation of Blood-Brain Barrier Functions in Central Nervous System Disorders. Fluids and Barriers of the CNS, 19, Article No. 27.
https://doi.org/10.1186/s12987-022-00317-z |
[23] | 谢涛波, 钟纯正, 符尧天, 王国卿, 米东华. 银杏叶提取物对急性脑梗死模型大鼠血脑屏障功能及PI3K/AKT信号通路的影响及作用机制[J]. 中国老年学杂志, 2021, 41(20): 4467-4471 |
[24] | Hu, S., Liu, T., Wu, Y., Yang, W., Hu, S., Sun, Z., et al. (2019) Panax Notoginseng Saponins Suppress Lipopolysaccharide-Induced Barrier Disruption and Monocyte Adhesion on bEnd.3 Cells via the Opposite Modulation of Nrf2 Antioxidant and NF-κB Inflammatory Pathways. Phytotherapy Research, 33, 3163-3176. https://doi.org/10.1002/ptr.6488 |
[25] | Li, Y., Zhong, W., Jiang, Z. and Tang, X. (2019) New Progress in the Ap-proaches for Blood-Brain Barrier Protection in Acute Ischemic Stroke. Brain Research Bulletin, 144, 46-57. https://doi.org/10.1016/j.brainresbull.2018.11.006 |