|
Applied Physics 2022
铁酸镧纳米材料的制备及其压电催化性能研究
|
Abstract:
随着印染行业的发展,大量染料废水被排放到水环境中,造成了水体污染、生态环境破坏等问题。染料废水具有很强的抗氧化性、抗生化性,导致用普通的方法难以处理。研究发现压电催化技术可以充分利用振动能实现低能耗、高效率去除染料污染物。本论文采用共沉淀法制备了铁酸镧(LaFeO3)压电纳米材料,利用其压电效应与电化学之间的耦合实现了甲基橙染料的降解。经过180分钟的超声振动激励,LaFeO3可以降解98.15%的甲基橙染料。通过添加自由基抑制剂后发现LaFeO3压电催化性能主要受?O2-和?OH的影响。LaFeO3纳米材料在压电催化降解染料废水方面具有潜在的应用前景。
With the development of printing and dyeing industry, a large number of dye wastewater is discharged into the water environment, resulting in water pollution, ecological environment damage and other problems. Dye wastewater has strong antioxidant and biochemical resistance, which makes it difficult to treat through traditional methods. It is found that piezoelectric catalytic technology can make full use of ultrasonic vibration energy to remove dye pollutants with low energy consumption and high efficiency. In this paper, lanthanum ferrite (LaFeO3) nanomaterial is prepared via coprecipitation method and used as the catalyst to decompose methyl orange dye solution through the coupling of piezoelectric effect and electrochemistry. The piezoelectric catalytic decomposition ratio of methyl orange dye can reach 98.15% after 180 min of ultrasonic vibration. By adding free radical scavengers, it is found that the piezoelectric catalytic performance of LaFeO3 is mainly affected by ?O2- and ?OH. LaFeO3 nanomaterial shows the potential application in piezocatalytically decomposing dye wastewater.
[1] | Li, W., Mu, B. and Yang, Y. (2019) Feasibility of Industrial-Scale Treatment of Dye Wastewater via Bio-Adsorption Technology. Bioresource Technology, 277, 157-170. https://doi.org/10.1016/j.biortech.2019.01.002 |
[2] | Koe, W.S., Lee, J.W., Chong, W.C., Pang, Y.L. and Sim, L.C. (2020) An Overview of Photocatalytic Degradation: Photocatalysts, Mechanisms, and Development of Photocatalytic Membrane. Environmental Science and Pollution Research, 27, 2522-2565. https://doi.org/10.1007/s11356-019-07193-5 |
[3] | Xu, X., Xiao, L., Jia, Y., Hong, Y., Ma, J. and Wu, Z. (2018) Strong Visible Light Photocatalytic Activity of Magnetically Recyclable Sol–Gel-Synthesized ZnFe2O4 for Rhodamine B Degradation. Journal of Electronic Materials, 47, 536-541. https://doi.org/10.1007/s11664-017-5810-4 |
[4] | Luo, W., Ying, J., Yu, S., Yang, X., Jia, Y., Chen, M. and Wu, Z. (2020) ZnS: Cu Powders with Strong Visible-Light Photocatalysis and Pyro-Catalysis for Room-Temperature Dye De-composition. Ceramics International, 46, 12096- 12101. https://doi.org/10.1016/j.ceramint.2020.01.253 |
[5] | Sakthivel, T., Huang, X., Wu, Y. and Rtimi, S. (2020) Recent Progress in Black Phosphorus Nanostructures as Environmental Photocatalysts. Chemical Engineering Journal, 379, Ar-ticle ID: 122297.
https://doi.org/10.1016/j.cej.2019.122297 |
[6] | Guan, J., Jia, Y., Cao, J., Yuan, G., Huang, S., Cui, X. and Wu, Z. (2022) Enhancement of Piezoelectric Catalysis of Na0.5Bi0.5TiO3 with Electric Poling for Dye Decomposition. Ceramics International, 48, 3695-3701.
https://doi.org/10.1016/j.ceramint.2021.10.151 |
[7] | Wang, P., Li, X., Fan, S., Chen, X., Qin, M., Long, D. and Liu, S. (2020) Impact of Oxygen Vacancy Occupancy on Piezo-Catalytic Activity of BaTiO3 Nanobelt. Applied Catalysis B: Environmental, 279, Article ID: 119340.
https://doi.org/10.1016/j.apcatb.2020.119340 |
[8] | Tu, S., Guo, Y., Zhang, Y., Hu, C., Zhang, T., Ma, T. and Huang, H. (2020) Piezocatalysis and Piezo-Photocatalysis: Catalysts Classification and Modification Strategy, Reaction Mechanism, and Practical Application. Advanced Functional Materials, 30, Article ID: 2005158. https://doi.org/10.1002/adfm.202005158 |
[9] | Guan, J., Jia, Y., Chang, T., Ruan, L., Xu, T., Zhang, Z. and Zhu, G. (2022) Highly Efficient Piezo-Catalysis of the Heat-Treated Cellulose Nanocrystal for Dye Decomposition Driven by Ul-trasonic Vibration. Separation and Purification Technology, 286, Article ID: 120450. https://doi.org/10.1016/j.seppur.2022.120450 |
[10] | 洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏. AgNbO3压电纳米材料压-电-化学耦合研究[J]. 物理学报, 2016, 65(10): 219-226. |
[11] | Xu, X., Jia, Y., Xiao, L. and Wu, Z. (2018) Strong Vibration-Catalysis of ZnO Nanorods for Dye Wastewater Decolorization via Piezo-Electro-Chemical Coupling. Chemosphere, 193, 1143-1148.
https://doi.org/10.1016/j.chemosphere.2017.11.116 |
[12] | Liu, X., Xiao, L., Zhang, Y. and Sun, H. (2020) Signifi-cantly Enhanced Piezo-Photocatalytic Capability in BaTiO3 Nanowires for Degrading Organic Dye. Journal of Materi-omics, 6, 256-262. https://doi.org/10.1016/j.jmat.2020.03.004 |
[13] | Tijare, S.N., Joshi, M.V., Padole, P.S., Mangrulkar, P.A., Rayalu, S.S. and Labhsetwar, N.K. (2012) Photocatalytic Hydrogen Generation through Water Split-ting on Nano-Crystalline LaFeO3 Perovskite. International Journal of Hydrogen Energy, 37, 10451-10456. https://doi.org/10.1016/j.ijhydene.2012.01.120 |
[14] | Rao, M.P., Musthafa, S., Wu, J.J. and Anandan, S. (2019) Facile Synthesis of Perovskite LaFeO3 Ferroelectric Nanostructures for Heavy Metal Ion Removal Applications. Materi-als Chemistry and Physics, 232, 200-204.
https://doi.org/10.1016/j.matchemphys.2019.04.086 |
[15] | Cristobal, A.A., Botta, P.M., Bercoff, P.G. and López, J.P. (2009) Mechanosynthesis and Magnetic Properties of Nanocrystalline LaFeO3 Using Different iron Oxides. Materi-als Research Bulletin, 44, 1036-1040.
https://doi.org/10.1016/j.materresbull.2008.11.015 |
[16] | 张文璐. 钙钛矿结构铁酸镧纳米材料的二氧化氮气敏性能[D]: [硕士学位论文]. 武汉: 华中科技大学, 2017. |
[17] | Ruan, L., Jia, Y., Guan, J., Xue, B., Huang, S., Wang, Z. and Wu, Z. (2022) Tribo-Electro-Catalytic Dye Degradation Driven by Mechanical Friction Using MOF-Derived Ni-Co2O4 Double-Shelled Nanocages. Journal of Cleaner Production, 345, Article ID: 131060. https://doi.org/10.1016/j.jclepro.2022.131060 |
[18] | Ma, J., Ren, J., Jia, Y., Wu, Z., Chen, L., Haugen, N.O. and Liu, Y. (2019) High Efficiency Bi-Harvesting Light/Vibration Energy Using Piezoelectric Zinc Oxide Nanorods for Dye De-composition. Nano Energy, 62, 376-383.
https://doi.org/10.1016/j.nanoen.2019.05.058 |
[19] | Ismail, M., Wu, Z., Zhang, L., Ma, J., Jia, Y., Hu, Y. and Wang, Y. (2019) High-Efficient Synergy of Piezocatalysis and Photocatalysis in Bismuth Oxychloride Nanomaterial for Dye Decomposition. Chemosphere, 228, 212-218.
https://doi.org/10.1016/j.chemosphere.2019.04.121 |
[20] | Wang, L., Haugen, N.O., Wu, Z., Shu, X., Jia, Y., Ma, J. and Chai, Q. (2019) Ferroelectric BaTiO3@ ZnO Heterostructure Nanofibers with Enhanced Pyroelectrical-ly-Driven-Catalysis. Ceramics International, 45, 90-95.
https://doi.org/10.1016/j.ceramint.2018.09.137 |
[21] | Leng, J., Li, S., Wang, Z., Xue, Y. and Xu, D. (2010) Synthe-sis of Ultrafine Lanthanum Ferrite (LaFeO3) Fibers via Electrospinning. Materials Letters, 64, 1912-1914. https://doi.org/10.1016/j.matlet.2010.06.005 |
[22] | Chen, M., Jia, Y., Li, H., Wu, Z., Huang, T. and Zhang, H. (2021) Enhanced Pyrocatalysis of the Pyroelectric BiFeO3/g-C3N4 Heterostructure for Dye Decomposition Driven by Cold-Hot Temperature Alternation. Journal of Advanced Ceramics, 10, 338-346. https://doi.org/10.1007/s40145-020-0446-x |
[23] | Zhao, J., Chen, L., Luo, W., Li, H., Wu, Z., Xu, Z. and Jia, Y. (2020) Strong Tribo-Catalysis of Zinc Oxide Nanorods via Triboelectrically-Harvesting Friction Energy. Ceramics In-ternational, 46, 25293-25298.
https://doi.org/10.1016/j.ceramint.2020.06.322 |
[24] | Lei, H., Wu, M., Mo, F., Ji, S., Dong, X., Jia, Y. and Wu, Z. (2021) Efficiently Harvesting the Ultrasonic Vibration Energy of Two-Dimensional Graphitic Carbon Nitride for Piezo-catalytic Degradation of Dichlorophenols. Environmental Science: Nano, 8, 1398-1407. https://doi.org/10.1039/D0EN01028F |
[25] | Zhang, A., Liu, Z., Geng, X., Song, W., Lu, J., Xie, B. and Shu, L. (2019) Ultrasonic Vibration Driven Piezocatalytic Activity of Lead-Free K0.5Na0.5NbO3 Materials. Ceramics Internation-al, 45, 22486-22492.
https://doi.org/10.1016/j.ceramint.2019.07.271 |
[26] | Chen, J., Luo, W., Yu, S., Yang, X., Wu, Z., Zhang, H. and Jia, Y. (2020) Synergistic Effect of Photocatalysis and Pyrocatalysis of Pyroelectric ZnSnO3 Nanoparticles for Dye Degrada-tion. Ceramics International, 46, 9786-9793.
https://doi.org/10.1016/j.ceramint.2019.12.251 |
[27] | Ma, J., Jia, Y., Chen, L., Zheng, Y., Wu, Z., Luo, W. and Li, Y. (2020) Dye Wastewater Treatment Driven by Cyclically Heating/Cooling the Poled (K0.5Na0.5)NbO3 Pyroelectric Crystal Catalyst. Journal of Cleaner Production, 276, Article ID: 124218. https://doi.org/10.1016/j.jclepro.2020.124218 |
[28] | Zhang, Y., Phuong, P.T.T., Duy, N.P.H., Roake, E., Khanbareh, H., Hopkins, M. and Bowen, C. (2021) Polarisationtuneable Piezo-Catalytic Activity of Nb-Doped PZT with Low Curie Temperature for Efficient CO2 Reduction and H2 Generation. Nanoscale Advances, 3, 1362-1374. https://doi.org/10.1039/D1NA00013F |
[29] | Dai, X., Chen, L., Li, Z., Li, X., Wang, J., Hu, X. and He, Y. (2021) CuS/KTa0.75Nb0.25O3 Nanocomposite Utilizing Solar and Mechanical Energy for Catalytic N2 Fixation. Journal of Colloid and Interface Science, 603, 220-232.
https://doi.org/10.1016/j.jcis.2021.06.107 |
[30] | Feng, J., Fu, Y., Liu, X., Tian, S., Lan, S. and Xiong, Y. (2018) Significant Improvement and Mechanism of Ultrasonic Inactivation to Escherichia coli with Piezoelectric Effect of Hy-drothermally Synthesized T-BaTiO3. ACS Sustainable Chemistry & Engineering, 6, 6032-6041. https://doi.org/10.1021/acssuschemeng.7b04666 |