全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于无单元Galerkin法电流场数值模拟
Numerical Simulation of Current Field Based on Element-Free Galerkin Method

DOI: 10.12677/APP.2022.125028, PP. 247-256

Keywords: 线源电流源,强加边界条件,无单元Galerkin法,二维正演模拟
Line Source Current Source
, Imposing Boundary Conditions, Element-Free Galerkin Method, Two-Dimensional Forward Modeling

Full-Text   Cite this paper   Add to My Lib

Abstract:

直流电场勘探中,一般采用点电源通过傅氏变换来进行电流场二维正演,相对于利用线源进行二维电流场正演来说,其计算较为复杂;同时,无单元法解决了传统有限元方法的缺点,无单元Galerkin法只对节点进行处理,不受网格的影响,前期处理十分简单,具备精确的计算值、能够求解二次连续的优势。本文通过推导线源直流电的微分方程,采用强加边界条件即第一类边界条件,基于无单元Galerkin法建立了电位场目标函数。然后,由经典的均匀地下半空间模型,通过无单元Galerkin法正演模拟计算与理论值计算结果进行比较分析,验证了该方法的有效性及准确性,最后,在均匀地下半空间模型的基础上,建立了高阻和低阻异常体,通过正演计算,得到了其电位分布与电荷密度分布结果。结果表明该方法适用于对地下构造的正演模拟分析,其能够准确的找出地下含异常的位置,为实际中直流电场反演地下介质信息奠定了基础。
In direct current field exploration, two-dimensional current field forward modeling is generally carried out by point power source through Fourier transform. Compared with two-dimensional current field forward modeling by line source, its calculation is more complicated. At the same time, the element-free method solves the shortcomings of the traditional finite element method. The element-free Galerkin method only deals with nodes and is not affected by the grid. The preliminary processing is very simple, and it has the advantages of accurate calculation values and quadratic continuity. In this paper, the objective function of potential field is established based on the element-free Galerkin method by deriving the differential equation of linear source direct current and applying the imposed boundary condition (the first kind of boundary condition). Then, based on the classical underground half-space model, the effectiveness and accuracy of this method are verified by comparing the forward simulation results of element-free Galerkin method with the theoretical calculation results. Finally, on the basis of the uniform underground half-space model, the high and low resistance abnormal bodies are established. Through forward calculation, the potential distribution and charge density distribution were obtained. The results show that this method is suitable for forward modeling and analysis of underground structure, and it can accurately find the location of underground anomaly, which lays a foundation for inversion of underground media information by DIRECT current electric field in practice.

References

[1]  Claerbout, J.F. (1971) Toward a Unified Theory of Reflector Mapping. Geophysics, 36, 467.
https://doi.org/10.1190/1.1440185
[2]  Marfurt, K.J. (1984) Accuracy of Finite Difference and Finite Element Modeling of the Scalar and Elastic Wave Equation. Geophysics, 49, 533-549.
https://doi.org/10.1190/1.1441689
[3]  Ferte, G., Massin, P. and Moes, N. (2016) 3D Crack Propagation with Cohesive Elements in the Extended Finite Element Method. Computer Methods in Applied Mechanics & Engineering, 300, 347-374.
https://doi.org/10.1016/j.cma.2015.11.018
[4]  解海军, 李志强, 栗升. 线源直流电法有限元二维正演模拟[J]. 煤田地质与勘探, 2019, 47(1): 194-199.
[5]  李晓斌, 杨振威, 云美厚, 刘彦. 长电极直流电法滑坡监测有限元数值模拟[J]. 河南理工大学学报(自然科学版), 2019, 38(1): 61-67.
[6]  张钱江, 戴世坤, 陈龙伟, 强建科, 李昆, 赵东东. 基于网格加密-收缩的2.5D直流电法有限元模拟(英文) [J]. 应用地球物理(英文版), 2016, 13(2): 257-266+416-417.
[7]  Yan, B., Li, Y. and Ying, L. (2016) Adaptive Finite Element Modeling of Direct Current Resistivity in 2-D Generally Anisotropic Structures. Geophysical Prospecting for Petroleum, 130, 169-176.
https://doi.org/10.1016/j.jappgeo.2016.04.018
[8]  Chou, T.-K., Chouteau, M. and Dubé, J.-S. (2016) Intelligent Meshing Technique for 2D Resistivity Inverse Problems. Geophysics, 81, 217-224.
https://doi.org/10.1190/geo2015-0177.1
[9]  黄鑫. 基于任意六面体谱元法频率/时间域航空电磁三维正演模拟研究[D]: [硕士学位论文]. 吉林: 吉林大学, 2019.
[10]  赵小娟. 无单元Galerkin法在解地下水承压流动问题中的应用[D]: [硕士学位论文]. 大连: 辽宁师范大学, 2019.
[11]  麻昌英, 柳建新, 郭荣文, 孙娅, 崔益安, 刘嵘, 刘海飞. 耦合有限单元法扩边的直流电阻率勘探无单元Galerkin法正演[J]. 地球物理学报, 2018, 61(6): 2578-2588.
[12]  李俊杰, 严家斌, 皇祥宇. 无单元Galerkin法大地电磁三维正演模拟[J]. 地质与勘探, 2015, 51(5): 946-952.
[13]  冯德山, 王洪华, 戴前伟. 基于无单元Galerkin法探地雷达正演模拟[J]. 地球物理学报, 2013, 56(1): 298-308.
[14]  Ma, C.Y., Liu, J.X., Liu, H.F., Guo, R.W., Musa, B. and Cui, Y.-A. (2019) 2.5D Electric Resistivity Forward Modeling with Element-Free Galerkin Method. Journal of Applied Geophysics, 162, 47-57.
https://doi.org/10.1016/j.jappgeo.2018.12.021
[15]  Claerbout, J.F. (1971) Toward a Unified Theory of Reflector Mapping. Geophysics, 36, 467.
https://doi.org/10.1190/1.1440185
[16]  Marfurt, K.J. (1984) Accuracy of Finite Difference and Finite Element Modeling of the Scalar and Elastic Wave Equation. Geophysics, 49, 533-549.
https://doi.org/10.1190/1.1441689
[17]  Ferte, G., Massin, P. and Moes, N. (2016) 3D Crack Propagation with Cohesive Elements in the Extended Finite Element Method. Computer Methods in Applied Mechanics & Engineering, 300, 347-374.
https://doi.org/10.1016/j.cma.2015.11.018
[18]  解海军, 李志强, 栗升. 线源直流电法有限元二维正演模拟[J]. 煤田地质与勘探, 2019, 47(1): 194-199.
[19]  李晓斌, 杨振威, 云美厚, 刘彦. 长电极直流电法滑坡监测有限元数值模拟[J]. 河南理工大学学报(自然科学版), 2019, 38(1): 61-67.
[20]  张钱江, 戴世坤, 陈龙伟, 强建科, 李昆, 赵东东. 基于网格加密-收缩的2.5D直流电法有限元模拟(英文) [J]. 应用地球物理(英文版), 2016, 13(2): 257-266+416-417.
[21]  Yan, B., Li, Y. and Ying, L. (2016) Adaptive Finite Element Modeling of Direct Current Resistivity in 2-D Generally Anisotropic Structures. Geophysical Prospecting for Petroleum, 130, 169-176.
https://doi.org/10.1016/j.jappgeo.2016.04.018
[22]  Chou, T.-K., Chouteau, M. and Dubé, J.-S. (2016) Intelligent Meshing Technique for 2D Resistivity Inverse Problems. Geophysics, 81, 217-224.
https://doi.org/10.1190/geo2015-0177.1
[23]  黄鑫. 基于任意六面体谱元法频率/时间域航空电磁三维正演模拟研究[D]: [硕士学位论文]. 吉林: 吉林大学, 2019.
[24]  赵小娟. 无单元Galerkin法在解地下水承压流动问题中的应用[D]: [硕士学位论文]. 大连: 辽宁师范大学, 2019.
[25]  麻昌英, 柳建新, 郭荣文, 孙娅, 崔益安, 刘嵘, 刘海飞. 耦合有限单元法扩边的直流电阻率勘探无单元Galerkin法正演[J]. 地球物理学报, 2018, 61(6): 2578-2588.
[26]  李俊杰, 严家斌, 皇祥宇. 无单元Galerkin法大地电磁三维正演模拟[J]. 地质与勘探, 2015, 51(5): 946-952.
[27]  冯德山, 王洪华, 戴前伟. 基于无单元Galerkin法探地雷达正演模拟[J]. 地球物理学报, 2013, 56(1): 298-308.
[28]  Ma, C.Y., Liu, J.X., Liu, H.F., Guo, R.W., Musa, B. and Cui, Y.-A. (2019) 2.5D Electric Resistivity Forward Modeling with Element-Free Galerkin Method. Journal of Applied Geophysics, 162, 47-57.
https://doi.org/10.1016/j.jappgeo.2018.12.021

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133