|
基于改进多目标差分进化的蒸汽动力系统碳排放和生产成本优化
|
Abstract:
化工企业生产过程中向空气排放大量温室气体,在双碳背景下,其需兼顾节能降本和减少碳排放两个矛盾的优化目标。本文先通过排放因子法对蒸汽动力系统的碳排放加以评价作为环境指标,再通过产能和耗能设备的运行参数、能源管网内部不同公用工程的产耗平衡,构建多目标优化的MINLP模型,提出一种动态参数多目标差分进化算法(D-MOEA)对MINLP模型进行求解,算法引进参数自适应调整策略,旨在提高算法的全局寻优能力,增强收敛能力。以某乙烯工厂实例为背景,用排放因子法作为碳排放的评价指标,使用动态参数多目标差分进化算法进行运算,结果表明排放因子法建立模型的有效性,以及算法的收敛性和精度更高。
Chemical enterprises emit a large number of greenhouse gases into the air in the production process. Under the background of double carbon, they need to take into account the two contradictory optimization objectives of energy conservation and cost reduction and carbon emission reduction. In this paper, the emission factor method is used to evaluate the carbon emission of steam power system as an environmental index. Then, according to the operation parameters of production capacity and energy-consuming equipment and the production and consumption balance of different utilities in the energy pipe network, a multi-objective optimization MINLP model is established. A dynamic parameter multi-objective differential evolution algorithm (D-MOEA) is proposed to solve the MINLP model. The algorithm introduces a parameter adaptive adjustment strategy to improve the global optimization ability and convergence ability of the algorithm. Taking an example of an ethylene plant as the background, the emission factor method is used as the evaluation index of carbon emission, and the dynamic parameter multi-objective differential evolution algorithm is used for calculation. The results show that the emission factor method is effective in establishing the model, and the convergence and accuracy of the algorithm are higher.
[1] | 李帅, 姜晓滨, 贺高红, 肖武, 吕俊锋, 史朝霞, 罗立. 蒸汽动力系统柔性设计和多目标优化研究进展[J]. 化工进展, 2017, 36(6): 1989-1996. 10.16085/j.issn.1000-6613.2017.06.004 |
[2] | 张鹏飞, 赵浩, 荣冈, 冯毅萍. 考虑生产成本和环境成本的蒸汽动力系统多目标运行优化[J]. 化工学报, 2016, 67(3): 715-723. |
[3] | Wu, L., Liu, Y.Z. and Liang, X.Q. (2016) Multi-Objective Optimization for Design of a Steam System with Drivers Option in Process Industries. Journal of Cleaner Production, 136, 89-98. 10.1016/j.jclepro.2016.04.067 |
[4] | 张琦, 马家琳, 高金彤, 倪团结, 李辉. 钢铁企业煤气-蒸汽-电力系统耦合优化及应用[J]. 化工学报, 2018, 69(7): 3149-3158. |
[5] | Xiao, W., Cheng, A.D., Li, S., et al. (2021) A Multi-Objective Optimization Strategy of Steam Power System to Achieve Standard Emission and Optimal Economic by NSGA-II. Energy, 232, Article ID: 120953.
10.1016/j.energy.2021.120953 |
[6] | 文凯, 张琦, 王晓坡. 钢铁企业蒸汽动力系统经济环境多目标优化[J]. 西安交通大学学报, 2021, 55(11): 66-76. |
[7] | Karmellos, M. and Mavrotas, G. (2019) Multi-Objective Optimization and Comparison Framework for the Design of Distributed Energy Systems. Energy Conversion and Management, 180, 473-495.
10.1016/j.enconman.2018.10.083 |
[8] | Jiang, G.Z., Kong, J.Y. and Li, G.F. (2011) Multi-Stage Production Planning Modeling of Iron and Steel Enterprise Based on Genetic Algorithm. Key Engineering Materials, 460-461, 540-545. |
[9] | 谢鹏飞, 汤大刚, 张世秋. 京津冀地区机动车燃油质量标准升级的环境经济分析[J]. 中国环境科学, 2017, 37(6): 2352-2362. |
[10] | Li, X.L., Xu, E.S., Ma, L.R., et al. (2019) Modeling and Dynamic Simulation of a Steam Generation System for a Parabolic trough Solar Power Plant. Renewable Energy, 132, 998-1017. 10.1016/j.renene.2018.06.094 |
[11] | Zhao, L., Ning, C. and You, F.Q. (2019) A Data-Driven Robust Optimization Approach to Operational Optimization of Industrial Steam Systems under Uncertainty. Computer Aided Chemical Engineering, 46, 1399-1404.
10.1016/B978-0-12-818634-3.50234-4 |
[12] | Li, Z.Q., Zhao, L., Du, W.L., et al. (2013) Modeling and Optimization of the Steam Turbine Network of an Ethylene Plant. Chinese Journal of Chemical Engineering, 21, 520-528. 10.1016/S1004-9541(13)60530-3 |
[13] | 郑航, 叶阿忠. 珠三角城市群碳排放空间关联网络结构及其影响因素[J/OL]. 中国环境科学, 2022: 1-13.
10.19674/j.cnki.issn1000-6923.20220112.018, 2022-03-25. |
[14] | 国务院, 生态环境部. 关于做好2019年度碳排放报告与核查及发电行业重点排放单位名单报送相关工作的通知[EB/OL]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202001/t20200107_757969.html, 2022-03-25. |
[15] | World Resources Institute (WRI) and World Business Council for Sustainable Development (WBCSD) (2004) The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard. |
[16] | Song, R.P. and Yang, S. (2011) GHG Protocol Tool for Energy Consumption in China. World Resources Institute (WRI), Washington DC. |
[17] | 刘明凯, 王占山, 邢彦丽. 基于强化多目标差分进化算法的电-气互联系统最优潮流计算[J]. 电工技术学报, 2021, 36(11): 2220-2232. 10.19595/j.cnki.1000-6753.tces.200405 |
[18] | 徐双双, 赵珺, 王伟. 基于多目标差分进化算法的高炉煤气系统调度[J]. 化工进展, 2018, 37(7): 2510-2515.
10.16085/j.issn.1000-6613.2017-1638 |
[19] | 管超, 张则强, 李云鹏, 贾林. 多行设备布局的一种多目标差分进化算法和线性规划混合方法[J]. 机械工程学报, 2019, 55(13): 160-174. |
[20] | 梁正平, 李辉才, 王志强, 胡凯峰, 朱泽轩. 自适应变化响应的动态多目标进化算法[J/OL]. 自动化学报, 2021: 1-18. 10.16383/j.aas.c210121, 2022-03-25. |
[21] | 国务院, 生态环境部. 中国区域电网基准线排放因子的公告[EB/OL].
https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/202012/W020201229610353340851.pdf, 2022-03-25. |
[22] | 杨村, 冯武文, 于宏奇. 分子蒸馏技术与绿色精细化工[J]. 精细化工, 2005, 22(5): 321-323+353. |