全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于SALIR模型的病毒传播研究——以COVID-19为例
Study on the Spread of the Virus Based on SALIR Model —A Case Study on COVID-19

DOI: 10.12677/AAM.2022.115302, PP. 2850-2857

Keywords: 无症状感染者,系统稳定,COVID-19,SALIR模型
Asymptomatic Patients
, System Stability, COVID-19, SALIR Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

传染病毒的传播是人类健康问题非常重大的挑战,如2003年的SARS、2020年的新冠肺炎等病毒的传播给全世界造成了严重的伤害,因此研究病毒的传播是当今非常重要的科学问题之一。本文根据病毒传播的特性构建了基于常微分方程的SALIR模型,模型中重点考虑新冠肺炎病毒传播中无症状感染者的影响。通过对模型进行数值模拟和分析,发现模型能较好地反映被感染人数增长的一般规律,与真实数据基本相符。同时,我们还考虑了病毒传播能力对总感染人数的影响,发现病毒传播能力较弱时,不会造成大面积的感染,而当传染能力超过一定的阈值,病毒就会大面积的爆发。
The spread of infectious viruses poses a severe threat to human health. Viruses such as SARS in 2003 and COVID-19 in 2020 have caused serious damage around the world. Therefore, carrying out studies on the spread of viruses is one of the most meaningful scientific researches today. According to the properties of virus, SALIR Model based on ODE (ordinary differential equation) was con-structed. The model focuses on the impact of asymptomatic infections in the spread of COVID-19 vi-ruses. Through numerical modeling and analysis of the model, we found that the model can reflect the general rule of the increase in the number of infected people, which is basically consistent with the truthful data. Moreover, we also considered the impact of virus transmission capacity on the to-tal number of infected people and found that when the virus is found to be weak in transmission, it will not cause widespread infection. However, when the intensity of the infection exceeds a certain threshold, it will bring the massive outbreak of virus.

References

[1]  杨雨琦, 孙琦, 王悦欣, 严雪凌, 乐涛. 重庆市新型冠状病毒肺炎(NCP)疫情分析与趋势预测[J]. 重庆师范大学学报(自然科学版), 2020, 37(1): 135-140.
[2]  杨伟宏, 秦阳, 吴兵兵. 环境感知的新冠肺炎传播态势的建模与分析[J]. 计算机应用研究, 2021, 38(7): 2077-2080.
https://doi.org/10.19734/j.issn.1001-3695.2020.08.0220
[3]  桑茂盛, 丁一, 包铭磊, 方攸同, 卢冰冰. 基于新冠病毒特征及防控措施的传播动力学模型[J]. 系统工程理论与实践, 2021, 41(1): 124-133.
[4]  郭尊光, 李明涛, 常利利, 张娟, 梁娟, 邢国荣, 张伟, 孙桂全. 基于反应扩散方程研究新型冠状病毒肺炎在武汉早期传播特征[J]. 工程数学学报, 2020, 37(4): 391-402.
[5]  闫慧林, 王晓静, 白玉珍. 一类具有隔离和治疗措施的新型冠状病毒肺炎(COVID-19)传染病模型研究[J]. 北京建筑大学学报, 2021, 37(1): 74-79.
[6]  王国柱, 池晓航, 周强. 基于改进SEIR模型的疫情预测与分析[J]. 河南工学院学报, 2020, 28(5): 29-33.
[7]  谭键滨, 蒋宇康, 田婷, 王学钦. P-SIHR概率图模型: 一个可估计未隔离感染者数的适用于COVID-19的传染病模型[J]. 应用数学学报, 2020, 43(2): 365-382.
[8]  李瑞松, 刘洪久. 基于传染病模型应用于中美两国应对COVID-19的对比研究[J]. 疾病预防控制通报, 2021, 36(2): 1-5+21.
[9]  刘雅姝, 吴琪俊, 陆一涵, 赵玉虹. 新型冠状病毒肺炎(COVID-19)传染病预测模型分析[J]. 公共卫生与预防医学, 2020, 31(3): 10-13.
[10]  崔景安, 吕金隆, 郭松柏, 陈田木. 新发传染病动力学模型——应用于2019新冠肺炎传播分析[J]. 应用数学学报, 2020, 43(2): 147-155.
[11]  韦原原, 江南, 陈云海, 李响, 杨振凯. 顾及时空对象空间相互作用的疫情风险评估建模与应用[J]. 地球信息科学学报, 2021, 23(2): 274-283.
[12]  Al-Raeei, M. (2021) The COVID-19 Basic Reproductive Ratio Using SEIR Model for the Middle East Countries and Some Other Countries for Two Stages of the Disease. Bulletin of the National Research Centre, 45, 112.
https://doi.org/10.1186/s42269-021-00572-4
[13]  Samui, P., Mondal, J. and Khajanchi, S. (2020) A Mathematical Model for COVID-19 Transmission Dynamics with a Case Study of India. Chaos, Solitons & Fractals, 140, Article ID: 110173.
https://doi.org/10.1016/j.chaos.2020.110173
[14]  Khan, A., Zarin, R., Hussain, G., Ahmad, N.A., Mohd, M.H. and Yusuf, A. (2021) Stability Analysis and Optimal Control of Covid-19 with Convex Incidence Rate in Khyber Pakhtunkhawa (Pakistan). Results in Physics, 20, Article ID: 103703.
https://doi.org/10.1016/j.rinp.2020.103703
[15]  Ivorra, B., Ferrández, M.R., Vela-Pérez, M. and Ramos, A.M. (2020) Mathematical Modeling of the Spread of the Coronavirus Disease 2019 (COVID-19) Taking into Account the Undetected Infections. The Case of China. Communications in Nonlinear Science and Numerical Simulation, 88, Article ID: 105303.
https://doi.org/10.1016/j.cnsns.2020.105303
[16]  Anirudh, A. (2020) Mathematical Modeling and the Transmis-sion Dynamics in Predicting the Covid-19—What Next in Combating the Pandemic. Infectious Disease Modelling, 5, 366-374.
https://doi.org/10.1016/j.idm.2020.06.002
[17]  Chakraborty, T. and Ghosh, I. (2020) Real-Time Fore-casts and Risk Assessment of Novel Coronavirus (COVID-19) Cases: A Data-Driven Analysis. Chaos, Solitons & Fractals, 135, Article ID: 109850.
https://doi.org/10.1016/j.chaos.2020.109850
[18]  Wang, X.C., Wang, S.F., Lan, Y.H., Tao, X.F. and Xiao, J.H. (2020) The Impact of Asymptomatic Individuals on the Strength of Public Health Interventions to Prevent the Second Outbreak of COVID-19. Nonlinear Dynamics, 101, 2003-2012.
https://doi.org/10.1007/s11071-020-05736-x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133