|
Botanical Research 2022
水稻抗病机制及其研究进展
|
Abstract:
水稻是世界上三大粮食作物之一。水稻的产量和品质直接关系着人民的生活。然而在自然界中,水稻总会受到各种病原菌的危害,这些会使水稻的产量和品质急剧下降。因此,研究水稻抗病相关基因及其机制是防治水稻病原菌的最有效策略。本文主要阐述了水稻抗病免疫机制以及相关抗病基因在水稻抗病性研究中所获得的的进展,期待为培育高产,抗病的新型水稻提供理论依据。
Rice is one of the three major food crops in the world. The yield and quality of rice are directly related to people’s lives. However, in nature, rice is always harmed by various pathogenic bacteria, which will drastically reduce the yield and quality of rice. Therefore, the study of rice disease resistance-related genes and their mechanisms is the most effective strategy to control rice pathogens. This paper mainly expounds the immune mechanism of rice disease resistance and the pro- gress of related disease resistance genes in the research of rice disease resistance.
[1] | 蔡华东, 杜宝山. 水稻常见病虫害的识别与防治[J]. 吉林农业, 2019(21): 65. |
[2] | 董继新, 董海涛, 李德葆. 水稻抗瘟性研究进展[J]. 农业生物技术学报, 2000, 8(1): 99-102. |
[3] | 曹剑波. 水稻主效抗病基因抗白叶枯病和细菌性条斑病的细胞学机制研究[D]: [博士学位论文]. 武汉: 华中农业大学, 2018. |
[4] | 严霞, 牛晓磊, 陶均. 病原菌诱发的植物先天免疫研究进展[J]. 分子植物育种, 2018, 16(3): 821-831. |
[5] | Yuan, M., Jiang, Z., Bi, G., et al. (2021) Pattern-Recognition Receptors Are Required for NLR-Mediated Plant Immunity. Nature, 592, 105-109. https://doi.org/10.1038/s41586-021-03316-6 |
[6] | Ngou, B.P.M., Ahn, H.-K., Ding, P., et al. (2021) Mutual Potentiation of Plant Immunity by Cell-Surface and Intracellular Receptors. Nature, 592, 110-115. https://doi.org/10.1038/s41586-021-03315-7 |
[7] | 袁斌. OsMPK6双向调控水稻抗病反应[D]: [博士学位论文]. 武汉: 华中农业大学, 2007. |
[8] | 刘芃. 小麦水杨酸信号通路介导的抗条锈病机理研究[D]: [硕士学位论文]. 咸阳: 西北农林科技大学, 2014. |
[9] | Gaffney, T., Friedrich, L., Vernooij, B., et al. (1993) Requirement of Salicylic Acid for the Induction of Systemic Acquired Resistance. Science, 261, 754-756. https://doi.org/10.1126/science.261.5122.754 |
[10] | Knoester, M., Pieterse, C.M., Bol, J.F., et al. (1999) Systemic Resistance in Arabidopsis Induced by Rhizobacteria Requires Ethylene-Dependent Signaling at the Site of Application. Molecular Plant-Microbe Interactions, 12, 720-727.
https://doi.org/10.1094/MPMI.1999.12.8.720 |
[11] | Pieterse, C.M., Zamioudis, C., Berendsen, R.L., et al. (2014) Induced Systemic Resistance by Beneficial Microbes. Annual Review of Phytopathology, 52, 347-375. https://doi.org/10.1146/annurev-phyto-082712-102340 |
[12] | Boutrot, F. and Zipfel, C. (2017) Function, Discovery, and Exploitation of Plant Pattern Recognition Receptors for Broad- Spectrum Disease Resistance. Annual Review of Phytopathology, 55, 257-286.
https://doi.org/10.1146/annurev-phyto-080614-120106 |
[13] | Yu, X., Feng, B., He, P., et al. (2017) From Chaos to Harmony: Responses and Signaling upon Microbial Pattern Recognition. Annual Review of Phytopathology, 55, 109-137. https://doi.org/10.1146/annurev-phyto-080516-035649 |
[14] | Lacombe, S., Rougon-Cardoso, A., Sherwood, E., et al. (2010) Interfamily Transfer of a Plant Pattern-Recognition Receptor Confers Broad-Spectrum Bacterial Resistance. Nature Biotechnology, 28, 365-369.
https://doi.org/10.1038/nbt.1613 |
[15] | Yoshimura, S., Yamanouchi, U., Katayose, Y., et al. (1998) Expression of Xa1, a Bacterial Blight-Resistance Gene in Rice, Is Induced by Bacterial Inoculation. Proceedings of the National Academy of Sciences, 95, 1663-1668.
https://doi.org/10.1073/pnas.95.4.1663 |
[16] | Ji, C., Ji, Z., Liu, B., et al. (2020) Xa1 Allelic R Genes Activate Rice Blight Resistance Suppressed by Interfering TAL Effectors. Plant Communications, 1, Article ID: 100087. https://doi.org/10.1016/j.xplc.2020.100087 |
[17] | Gao, M., He, Y., Yin, X., et al. (2021) Ca2+ Sensor-Mediated ROS Scavenging Suppresses Rice Immunity and Is Exploited by a Fungal Effector. Cell, 184, 5391-5404.e5317. https://doi.org/10.1016/j.cell.2021.09.009 |
[18] | Wang, Z., Xia, Y., Lin, S., et al. (2018) Osa-miR164a Targets Os NAC 60 and Negatively Regulates Rice Immunity against the Blast Fungus Magnaporthe oryzae. The Plant Journal, 95, 584-597. https://doi.org/10.1111/tpj.13972 |
[19] | Li, Y., Zhang, Q., Zhang, J., et al. (2010) Identification of microRNAs Involved in Pathogen-Associated Molecular Pattern-Triggered Plant Innate Immunity. Plant Physiology, 152, 2222-2231. https://doi.org/10.1104/pp.109.151803 |
[20] | Lin, R., Zhao, W., Meng, X., et al. (2007) Rice Gene OsNAC19 Encodes a Novel NAC-Domain Transcription Factor and Responds to Infection by Magnaporthe grisea. Plant Science, 172, 120-130.
https://doi.org/10.1016/j.plantsci.2006.07.019 |