全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

口腔修复材料抗菌技术研究进展
Research Progress in Antibacterial Technology of Dental Restorative Materials

DOI: 10.12677/ACM.2022.125653, PP. 4516-4522

Keywords: 口腔修复材料,抗菌
Prosthodontic Materials
, The Antibacterial

Full-Text   Cite this paper   Add to My Lib

Abstract:

据目前口腔修复材料研究的良好进展,已能较好地实现口腔修复的美学化,并最大程度上恢复口腔组织原有功能。而目前临床上在临床使用的不同的口腔组织修补材料在对各种牙体组织缺损、牙体功能缺失修复以及各种牙列缺损进行修补处理后,由于组织修补的材料本身和受损口腔组织结构之间存在的某些相对异性,这可能导致口腔疾病的发生。本文就三类针对抗菌技术的临床研究较广的口腔修复材料进行了综述,给临床医生合理使用这些材料提供了参考。
According to the fabulous progress in the research of dental restorative materials, it has been able to achieve the aesthetic of dental restoration and restore the original function of oral tissue to the greatest extent. However, the different dental tissue repair materials currently used in clinic have been used to repair various kinds of dental tissue defects, loss of tooth function and various kinds of dentition defects, this may lead to oral disease because of some relative heterogeneity between the material of tissue repair and the damaged oral tissue structure. In this paper, three kinds of dental prosthodontic materials which are widely studied in clinic are reviewed, which can provide refer-ences for clinicians to use these materials rationally.

References

[1]  孟焕新. 牙周病学[M]. 第5版. 北京: 人民卫生出版社, 2021: 34.
[2]  Steinberg, D. and Eyal, S. (2001) Early Formation of Streptococcus sobrinus Biofilm on Various Dental Restorative Materials. Journal of Dentistry, 30, 47-51.
https://doi.org/10.1016/S0300-5712(01)00058-6
[3]  Carlen, A., Nikdel, K., Wennerberg, A., et al. (2001) Surface Characteristics and in Vitro Biofilm Formation on Glass Ionomer and Composite resin. Biomaterials, 22, 481-487.
https://doi.org/10.1016/S0142-9612(00)00204-0
[4]  Adamczyk, E. and Spieehowiez, E. (1990) Plaque Accumu-lation on Crowns Made of Various Materials. The International Journal of Prosthodontics, 3, 285-291.
[5]  马守治, 程辉, 闫福华. 口腔修复材料对细菌在其表面粘附和生长的影响[J]. 国外医学. 口腔医学分册, 2005, 32(5): 373-374.
[6]  张林祺, 马钢, 张红霞, 高勃. 载银无机抗菌剂在口腔科材料中的研究进展[J]. 牙体牙髓牙周病学杂志, 2007, 17(10): 602-605.
[7]  Quirynen, M., Marechal, M., Busscher, H.J., et al. (1988) The Influence of Sur-face Free-Energy on Planimetric Plaque Growth in Man. Journal of Dental Research, 68, 796-799.
https://doi.org/10.1177/00220345890680050801
[8]  佘文君, 张富强. 6种纳米级载银无机抗菌剂对口腔病原菌的抗菌活性比较[J]. 上海口腔医学, 2003, 10(5): 356-358.
[9]  Khaliehi, P., Cvitkoviteh, D.G. and Santerre, J.P. (2004) Effect of Composite Resin Biodegradation Products on Oral Streptococcal Growth. Biomaterials, 25, 5467-5472.
https://doi.org/10.1016/j.biomaterials.2003.12.056
[10]  Khalaf, M.E., Alomari, Q.D. and Omar, R. (2014) Factors Relating to Usage Patterns of Amalgam and Resin Composite for Posterior Restorations—A Prospective Analysis. Journal of Dentist, 42, 785-792.
https://doi.org/10.1016/j.jdent.2014.04.010
[11]  毛驭川, 张璐斯, 陈红艳, 等. 抗菌剂用于牙科复合树脂的研究进展[J]. 材料科学与工艺, 2021, 29(2): 1-19.
[12]  Deligeorgi, V., Mjor, I. and Wilson, N. (2001) An Overview of Reasons for the Placement and Replacement of Restorations. Primary Dental Care, os8, 5-11.
https://doi.org/10.1308/135576101771799335
[13]  周泽瑛, 张静月, 牛菊, 刘丹丹, 赵文迪, 刘晓秋. 牙科树脂材料抗菌性能的研究进展[J]. 口腔疾病防治, 2021, 29(9): 638-643.
[14]  Cao, W.W., Zhang, Y., Wang, X., et al. (2017) Development of a Novel Resin-Based Dental Material with Dual Biocidal Modes and Sustained Release of Ag+ Ions Based on Photocurable Core-Shell AgBr/Cationic Polymer Nanocomposites. Journal of Materials Science: Materi-als in Medicine, 28, 103.
https://doi.org/10.1007/s10856-017-5918-3
[15]  Boaro, L.C., Campos, L.M., Varca, G.C., et al. (2019) Antibacterial Resin-Based Composite Containing Chlorhexidine for Dental Applications. Dental Ma-terials, 35, 909-918.
https://doi.org/10.1016/j.dental.2019.03.004
[16]  Zhang, K., Cheng, L., Imazato, S., et al. (2013) Effects of Dual Antibacterial Agents MDPB and Nano-Silver in Primer on Microcosm Biofilm, Cytotoxicity and Dentine Bond Properties. Journal of Dentistry, 41, 464-474.
https://doi.org/10.1016/j.jdent.2013.02.001
[17]  Melo, M.A., Cheng, L., Zhang, K., et al. (2013) Novel Dental Adhesives Containing Nanoparticles of Silver and Amorphous Calcium Phosphate. Dental Materials, 29, 199-210.
https://doi.org/10.1016/j.dental.2012.10.005
[18]  Nato, F., Mazzoni, A., Gobbi, P., et al. (2010) CHX-Containing Adhesive Inhibits Dentin MMPs: A Zymographic Assay. Dental Materials, 26, e13-e14.
https://doi.org/10.1016/j.dental.2010.08.035
[19]  胡云睿. 纳米银及其复合抗菌材料的研究[D]: [博士学位论文]. 广州: 华南理工大学, 2013.
[20]  陈美婉, 彭新生, 吴琳娜, 等. 纳米银抗菌剂的研究和应用[J]. 中国消毒学杂志, 2009(4): 424-426.
[21]  宫雪. 载纳米银抗菌复合材料的研究[D]: [硕士学位论文]. 兰州: 西北师范大学, 2010.
[22]  陈慧, 程磊. 防龋粘接材料的研究进展[J]. 国际口腔医学杂志, 2017, 44(1): 92-97.
[23]  董春晨, 吕亚林. 人工种植牙抗菌表面的研究进展[J]. 口腔颌面修复学杂志, 2019, 20(3): 175.
[24]  Ueno, T., Yamada, M., Hori, N., et al. (2010) Effect of Ultraviolet Photoactivation of Titanium on Osseointegration in a Rat Model. International Journal of Oral & Maxillofacial Implants, 25, 287-294.
[25]  Aita, H., Hori, N., Takeuchi, M., et al. (2008) The Effect of Ultraviolet Functionalization of Titallium on Integration Witll Bone. Biomaterials, 30, 1015-1025.
https://doi.org/10.1016/j.biomaterials.2008.11.004
[26]  Lin, D.J., Tsai, M.T., Shieh, T.M., et al. (2013) In Vitro Antibacterial Activity and Cytocompatibility of Bismuth Doped Micro-Arc Oxidized Titanium. Journal of Biomaterials Applications, 27, 553-563.
https://doi.org/10.1177/0885328211414942
[27]  Rokitskaya, T.I., Kolodkin, N.I., Kotova, E.A., et al. (2011) In-dolicidin Action on Membrane Permeability: Carrier Mechanism versus Pore Formation. Biochimica et Biophysica Acta, 1808, 91-97.
https://doi.org/10.1016/j.bbamem.2010.09.005
[28]  Peyre, J., et al. (2012) Co-Grafting of Ami-no-Poly(ethyleneglycol) and Magainin I on a TiO2 Surface: Tests of Antifouling and Antibacterial Activities. Journal of Physical Chemistry B, 116, 13839-13847.
https://doi.org/10.1021/jp305597y
[29]  王景蓉, 高姗姗. 义齿基托抗菌物质抗真菌和细菌感染的研究进展[J]. 中华老年口腔医学杂志, 2020, 18(6): 356-360.
https://doi.org/10.19749/j.cn.cjgd.1672-2973.2020.06.009
[30]  曹江南, 刘晓秋, 姚慧珍, 等. 纳米银涂层改性义齿基托的细胞毒性与抗菌性能研究[J]. 中华口腔医学杂志, 2014, 49(4): 229-233.
[31]  Chen, R., Han, Z., Huang, Z., et al. (2017) Antibacterial Activity, Cytotoxicity and Mechan-ical Behavior of Nano-Enhanced Denture Base Resin with Different Kinds of Inorganic Antibacterial Agents. Dental Materials Journal, 36, 693-699.
https://doi.org/10.4012/dmj.2016-301
[32]  Fouda, S.M., Gad, M.M., Ellakany, P., et al. (2019) The Effect of Nanodiamonds on Candida Albicans Adhesion and Surface Characteristics of PMMA Denture Base Material—An in Vitro Study. Journal of Applied Oral Science, 27, e20180779.
https://doi.org/10.1590/1678-7757-2018-0779
[33]  Pereira-Cenci, T., Cury, A.A., Cenci, M.S., et al. (2007) In Vitro Candida Colonization on Acrylic Resins and Denture Liners: Influence of Surface Free Energy, Roughness, Saliva, and Adhering Bacteria. International Journal of Prosthodontics, 20, 308-310.
[34]  Palmieri, V., Bugli, F., Cacaci, M., et al. (2018) Graphene Oxide Coatings Prevent Candida albicans Biofilm Formation with a Controlled Release of Cur-cumin-Loaded Nanocomposites. Nanomedicine, 13, 2867-2879.
https://doi.org/10.2217/nnm-2018-0183
[35]  Rossoni, R.D., de Barros, P.P., das Chagas Lopes, L.A., et al. (2019) Effects of Surface Pre-Reacted Glass-Ionomer (S-PRG) Eluate on Candida spp.: Antifungal Activity, Anti-Biofilm Properties, and Protective Effects on Galleria mellonella against C. albicans Infection. Biofouling, 35, 997-1006.
https://doi.org/10.1080/08927014.2019.1686485

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133