|
利用网络药理学探讨栀子靶向铁死亡对酒精性肝病的作用机制
|
Abstract:
目的:基于网络药理学研究栀子改善酒精性肝病的铁死亡机制。方法:利用TCMSP和UniProt数据库筛选栀子的潜在目标,然后整合OMIM、Drugbank、GeneCards和DisGeNET获取酒精性肝病的作用靶点,再在FerrDb预测作用在铁死亡的目标基因,构建蛋白质相互作用的网络以及富集分析,最后进行分子对接,探索分子机制。结果:筛选出栀子在治疗酒精性肝病中具体作用在铁死亡通路上的17个基因,再综合PPI、GO、KEGG以及分子对接情况分析HMOX1、TP53、MAPK1和RB1可能是主要靶点。结论:本研究从理论上证明了栀子影响铁死亡而改善酒精性肝病。
Objective: Based on network pharmacology, we investigated the mechanism of gardeniae fructus to improve ferroptosis in alcoholic liver disease. Methods: We screened potential targets for gardeniae fructus using TCMSP and UniProt, and then we obtained targets for alcoholic liver disease using OMIM, Drugbank, GeneCards and DisGeNET. On a database called FerrDb, we predicted the target genes for ferroptosis. We built a network diagram of protein interactions and enrichment analysis; finally, we explored the molecular mechanisms through molecular docking analysis of them. Results: We screened out 17 genes involved in the effect of gardeniae fructus on the ferroptosis pathway in the treatment of alcoholic liver disease, and we believed that HMOX1, TP53, MAPK1 and RB1 were the main targets through comprehensive PPI, GO, KEGG and molecular docking. Conclusion: Theoretically, this study demonstrates that gardeniae fructus improves alcoholic liver disease by influencing ferroptosis.
[1] | Takei, H., Iizuka, S. and Yamamoto, M. (2020) Effects of Long-Term Administration of Gardeniae Fructus on Intra-Abdominal Organs of Rats. Evidence-Based Complementary & Alternative Medicine, 2020, Article ID: 4201508.
https://doi.org/10.1155/2020/4201508 |
[2] | Dong, R., Tian, Q., Shi, Y., et al. (2021) An Integrated Strategy for Rapid Discovery and Identification of Quality Markers in Gardenia Fructus Using an Omics Discrimination-Grey Correlation-Biological Verification Method. Frontiers in Pharmacology, 12, Article ID: 705498. https://doi.org/10.3389/fphar.2021.705498 |
[3] | Che, X., Wang, M., Wang, T., et al. (2016) Evaluation of the Antidepressant Activity, Hepatotoxicity and Blood Brain Barrier Permeability of Methyl Genipin. Molecules, 21, 923-933. https://doi.org/10.3390/molecules21070923 |
[4] | Zhang, Z., Wang, X., Zhang, D., et al. (2019) Geniposide-Mediated Protection against Amyloid Deposition and Behavioral Impairment Correlates with Downregulation of mTOR Signaling and Enhanced Autophagy in a Mouse Model of Alzheimer’s Disease. Aging (Albany NY), 11, 536-548. https://doi.org/10.18632/aging.101759 |
[5] | Kim, S.-J., Lee, S.-M., Cho, H.-I., et al. (2016) Genipin Alleviates Sepsis-Induced Liver Injury by Restoring Autophagy. British Journal of Pharmacology, 173, 980-991. https://doi.org/10.1111/bph.13397 |
[6] | 郭曙军, 赵志英. 栀子苷的药理作用及其作用机制研究进展[J]. 包头医学院学报, 2013, 29(2): 111-113. |
[7] | 王荣慧, 吴虹, 王梦蝶, 等. 栀子苷保肝利胆和肝毒性双重作用的研究进展[J]. 安徽中医药大学学报, 2020, 39(3): 88-91. |
[8] | Wang, W., Tian, D. and Zhang, Z. (2016) In Vitro Effects of Concomitant Use of Herbal Preparations on Cytochrome P450s Involved in Clozapine Metabolism. Molecules, 21, 597. https://doi.org/10.3390/molecules21050597 |
[9] | 黄涛, 毕旭东. 肝脏缺血再灌注损伤防治的研究进展[J]. 中国全科医学, 2007, 10(20): 1743-1745. |
[10] | Müller, A. and Sies, H. (1982) Role of Alcohol Dehydrogenase Activity and the Acetaldehyde in Ethanol-Induced Ethane and Pentane Production by Isolated Perfused Rat Liver. Biochemical Journal, 206, 153-156.
https://doi.org/10.1042/bj2060153 |
[11] | Lieber, C.S., et al. (1989) Impaired Oxygen Utilization. A New Mechanism for the Hepatotoxicity of Ethanol in Sub-Human Primates. The Journal of Clinical Investigation, 83, 1682-1690. https://doi.org/10.1172/JCI114068 |
[12] | Espina, N., et al. (1988) In Vitro and in Vivo Inhibitory Effect of Ethanol and Acetaldehyde on O6-Methylguanine Transferase. Carcinogenesis, 9, 761-766. https://doi.org/10.1093/carcin/9.5.761 |
[13] | 南婷婷, 许东霞, 王余宸铭, 等. 蝉花孢子粉多糖的酶辅助提取及对酒精性肝损伤小鼠的保护作用[J]. 食品工业科技, 2021(2): 295-301, 309. |
[14] | 袁慧琦, 梁楚燕, 梁健, 等. 铁皮石斛对小鼠急性酒精性肝损伤的保护作用[J]. 暨南大学学报(自然科学与医学版), 2016, 37(5): 384-388. |
[15] | Seitz, H.K., Bataller, R., Cortez-Pinto, H., et al. (2018) Alcoholic Liver Disease. Nature Reviews Disease Primers, 4, 16. https://doi.org/10.1038/s41572-018-0014-7 |
[16] | 王玲, 贾岩, 李蒙蒙, 等. 铁死亡在肝细胞癌中的作用以及研究进展[J]. 中国药理学通报, 2018, 34(6): 745-749. |
[17] | Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060. https://doi.org/10.1016/j.cell.2012.03.042 |
[18] | 马丙钧. 灵芝酸A对急性酒精性肝损伤小鼠的保护作用及机制研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2019. |
[19] | 孔诺. 莲子心油对小鼠急性酒精性肝损伤的保护作用的研究[D]: [硕士学位论文]. 南京: 南京师范大学, 2013. |
[20] | Ru, J., Li, P., Wang, J., et al. (2014) TCMSP: A Database of Systems Pharmacology for Drug Discovery from Herbal Medicines. Journal of Cheminformatics, 6, 13. https://doi.org/10.1186/1758-2946-6-13 |
[21] | Walters, J. (2002) New Advances in the Molecular and Cellular Biology of the Small Intestine. Current Opinion in Gastroenterology, 18, 161-167. https://doi.org/10.1097/00001574-200203000-00002 |
[22] | Consortium, U. (2021) UniProt: The Universal Protein Knowledgebase in 2021. Nucleic Acids Research, 49, D480- D489. |
[23] | Hamosh, A., et al. (2005) Online Mendelian Inheritance in Man (OMIM), a Knowledgebase of Human Genes and Genetic Disorders. Nucleic Acids Research, 33, D514-D517. https://doi.org/10.1093/nar/gki033 |
[24] | Wishart, D.S., Feunang, Y.D., Guo, A.C., et al. (2018) DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Research, 46, D1074-D1082. https://doi.org/10.1093/nar/gkx1037 |
[25] | Safran, M., Dalah, I., Alexander, J., et al. (2010) GeneCards Version 3: The Human Gene Integrator. Database (Oxford), 2010, baq020. https://doi.org/10.1093/database/baq020 |
[26] | Stelzer, G., et al. (2016) The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Current Protocols in Bioinformatics, 54, 1.30.31-31.30.33. https://doi.org/10.1002/cpbi.5 |
[27] | Pi?ero, J., Saüch, J., Sanz, F., et al. (2021) The DisGeNET Cytoscape App: Exploring and Visualizing Disease Genomics Data. Computational and Structural Biotechnology Journal, 19, 2960-2967.
https://doi.org/10.1016/j.csbj.2021.05.015 |
[28] | Min, L., Wu, Y., Cao, G., et al. (2021) A Network Pharmacology Strategy to Investigate the Anti-Osteoarthritis Mechanism of Main Lignans Components of Schisandrae Fructus. International Immunopharmacology, 98, Article ID: 107873. https://doi.org/10.1016/j.intimp.2021.107873 |
[29] | Hamosh, A., Scott, A., Amberger, J., et al. (2005) Online Mendelian Inheritance in Man (OMIM), a Knowledgebase of Human Genes and Genetic Disorders. Nucleic Acids Research, Oxford, 33, D514-D517.
https://doi.org/10.1093/nar/gki033 |
[30] | Wishart, D.S., Knox, C., Guo, A.C., et al. (2006) DrugBank: A Comprehensive Resource for in Silico Drug Discovery and Exploration. Nucleic Acids Research, 34, D668-D672. https://doi.org/10.1093/nar/gkj067 |
[31] | Li, S., Ying, Q.A., Rui, X.A., et al. (2019) Exploring the Protective Effect of ShengMai-Yin and Ganmaidazao Decoction Combination against Type 2 Diabetes Mellitus with Nonalcoholic Fatty Liver Disease by Network Pharmacology and Validation in KKAy Mice. Journal of Ethnopharmacology, 242, Article ID: 112029.
https://doi.org/10.1016/j.jep.2019.112029 |
[32] | Piero, J., Bravo, L., Queralt-Rosinach, N., et al. (2016) DisGeNET: A Comprehensive Platform Integrating Information on Human Disease-Associated Genes and Variants. Nucleic Acids Research, 45, D833-D839.
https://doi.org/10.1093/nar/gkw943 |
[33] | Cai, F.-F., Bian, Y.-Q., Wu, R., et al. (2019) Yinchenhao Decoction Suppresses Rat Liver Fibrosis Involved in an Apoptosis Regulation Mechanism Based on Network Pharmacology and Transcriptomic Analysis. Biomedicine & Pharmacotherapy, 114, Article ID: 108863. https://doi.org/10.1016/j.biopha.2019.108863 |
[34] | Zhou, N. and Bao, J. (2020) LiFerrDb: A Manually Curated Resource for Regulators and Markers of Ferroptosis and Ferroptosis-Disease Associations. Database: The Journal of Biological Databases and Curation, 2020, baaa021.
https://doi.org/10.1093/database/baaa021 |
[35] | Szklarczyk, D., Gable, A.L., Nastou, K.C., et al. (2021) The STRING Database in 2021: Customizable Protein-Protein Networks, and Functional Characterization of User-Uploaded Gene/Measurement Sets. Nucleic Acids Research, 49, D605-D612. https://doi.org/10.1093/nar/gkaa1074 |
[36] | Shi, M.J., Yan, X.L., Dong, B.S., et al. (2020) A Network Pharmacology Approach to Investigating the Mechanism of Tanshinone IIA for the Treatment of Liver Fibrosis. Journal of Ethnopharmacology, 253, Article ID: 112689.
https://doi.org/10.1016/j.jep.2020.112689 |
[37] | Li, L., Li, S.-H., Jiang, J.-P., et al. (2021) Investigating Pharmacological Mechanisms of Andrographolide on Non-Alcoholic Steatohepatitis (NASH): A Bioinformatics Approach of Network Pharmacology. Chinese Herbal Medicines, 13, 342-350. https://doi.org/10.1016/j.chmed.2021.05.001 |
[38] | Tomczak, K., Czerwinska, P. and Wiznerowicz, M. (2015) The Cancer Genome Atlas (TCGA): An Immeasurable Source of Knowledge. Contemporary Oncology/Wspólczesna Onkologia, 19, A68-A77.
https://doi.org/10.5114/wo.2014.47136 |
[39] | Sehnal, D., Bittrich, S., Deshpande, M., et al. (2021) Mol* Viewer: Modern Web App for 3D Visualization and Analysis of Large Biomolecular Structures. Nucleic Acids Research, 49, W431-W437. https://doi.org/10.1093/nar/gkab314 |
[40] | Kim, S., Chen, J., Cheng, T., et al. (2021) PubChem in 2021: New Data Content and Improved Web Interfaces. Nucleic Acids Research, 49, D1388-D1395. https://doi.org/10.1093/nar/gkaa971 |
[41] | Sebastian, S., Sven, S., Joachim, H.V., et al. (2015) PLIP: Fully Automated Protein-Ligand Interaction Profiler. Nucleic Acids Research, 43, W443-W447. https://doi.org/10.1093/nar/gkv315 |
[42] | Cao, J.Y. and Dixon, S.J. (2016) Mechanisms of Ferroptosis. Cellular and Molecular Life Sciences: CMLS, 73, 2195-2209. https://doi.org/10.1007/s00018-016-2194-1 |
[43] | Oseini, A.M. and Sanyal, A.J. (2017) Therapies in Non-Alcoholic Steatohepatitis (NASH). Liver International, 37, 97-103. https://doi.org/10.1111/liv.13302 |
[44] | 庞庆丰, 邱玉保, 吴亚先, 等. 铁死亡抑制剂在制备防治淹溺所致的肺损伤药物中的应用[P]. 中国, CN111529518A. 2020-05-22. |
[45] | Zhou, J., Yao, N., Wang, S., et al. (2019) Fructus Gardeniae-Induced Gastrointestinal Injury Was Associated with the Inflammatory Response Mediated by the Disturbance of Vitamin B6, Phenylalanine, Arachidonic Acid, Taurine and Hypotaurine Metabolism. Journal of Ethnopharmacology, 235, 47-55. https://doi.org/10.1016/j.jep.2019.01.041 |
[46] | Yao, Q., Li, S., Cheng, X., et al. (2020) Yin Zhi Huang, a Traditional Chinese Herbal Formula, Ameliorates Diet-Induced Obesity and Hepatic Steatosis by Activating the AMPK/SREBP-1 and the AMPK/ACC/CPT1A Pathways. Annals of Translational Medicine, 8, 231. https://doi.org/10.21037/atm.2020.01.31 |
[47] | Yan, T., Yan, N., Wang, P., et al. (2020) Herbal Drug Discovery for the Treatment of Nonalcoholic Fatty Liver Disease. Acta Pharmaceutica Sinica B, 10, 3-18. https://doi.org/10.1016/j.apsb.2019.11.017 |
[48] | 张立明, 何开泽, 任治军, 等. 栀子中京尼平甙对CCl4急性小鼠肝损伤保护作用的生化机理研究[J]. 应用与环境生物学报, 2005, 11(6): 669-672. |
[49] | Rong, Y.-P., Huang, H.-T., Liu, J.-S., et al. (2017) Protective Effects of Geniposide on Hepatic Ischemia/Reperfusion Injury. Transplantation Proceedings, 49, 1455-1460. https://doi.org/10.1016/j.transproceed.2017.02.063 |
[50] | Kim, H.-Y., Kim, J. and Lee, S.-M. (2013) Protective Effects of Geniposide and Genipin against Hepatic Ischemia/Reperfusion Injury in Mice. Biomolecules & Therapeutics, 21, 132-137.
https://doi.org/10.4062/biomolther.2013.005 |
[51] | Liu, F., Li, Y., Li, M., et al. (2020) Study on Mechanism of Iridoid Glycosides Derivatives from Fructus Gardeniae in Jiangxi Province by Network Pharmacology. Evidence-Based Complementary & Alternative Medicine, 2020, Article ID: 4062813. https://doi.org/10.1155/2020/4062813 |
[52] | Shi, S.H., Cai, Y.P., Cai, X.J., et al. (2014) A Network Pharmacology Approach to Understanding the Mechanisms of Action of Traditional Medicine: Bushenhuoxue Formula for Treatment of Chronic Kidney Disease. PLoS ONE, 9, e89123. https://doi.org/10.1371/journal.pone.0089123 |
[53] | Dunn, L.L., Kong, S.M.Y., Tumanov, S., et al. (2021) Hmox1 (Heme Oxygenase-1) Protects against Ischemia-Mediated Injury via Stabilization of HIF-1α (Hypoxia-Inducible Factor-1α). Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 317-330. https://doi.org/10.1161/ATVBAHA.120.315393 |
[54] | Tian, R., Yang, Z.Y., Lu, N.H. and Peng, Y.-Y. (2019) Quercetin, But Not Rutin, Attenuated Hydrogen Peroxide-Induced Cell Damage via Heme Oxygenase-1 Induction in Endothelial Cells. Archives of Biochemistry and Biophysics, 676, Article ID: 108157. https://doi.org/10.1016/j.abb.2019.108157 |
[55] | Qiu, J., Wang, W., Li, Y., et al. (2020) Comparison of Mutational Landscape of Non-Alcoholic Fatty Liver Disease, Viral Hepatitis, and Alcohol Consumption Related Hepatocellular Carcinoma. Journal of Clinical Oncology, 38, e16614. https://doi.org/10.1200/JCO.2020.38.15_suppl.e16614 |
[56] | Chae, H., Sung, P.S., Choi, H., et al. (2021) Targeted Next-Generation Sequencing of Plasma Cell-Free DNA in Korean Patients with Hepatocellular Carcinoma. Annals of Laboratory Medicine, 41, 198-206.
https://doi.org/10.3343/alm.2021.41.2.198 |
[57] | Wungu, C., Amin, M., Kholili, U., et al. (2021) Associations between P53, Transforming Growth Factor Beta-1, and Interleukin-10 Serum Levels with Advanced Liver Disease and Hepatitis B Virus Infection. Indian Journal of Forensic Medicine & Toxicology, 15, 2842-2848. |
[58] | Wang, S.-M., Yang, P.-W., Feng, X.-J., et al. (2021) Apigenin Inhibits the Growth of Hepatocellular Carcinoma Cells by Affecting the Expression of microRNA Transcriptome. Frontiers in Oncology, 11, Article ID: 657665.
https://doi.org/10.3389/fonc.2021.657665 |
[59] | Morishita, A., Oura, K., Tadokoro, T., et al. (2021) MicroRNAs in the Pathogenesis of Hepatocellular Carcinoma: A Review. Cancers, 13, 514. https://doi.org/10.3390/cancers13030514 |
[60] | Pan, J.H., Kim, H., Tang, J., et al. (2020) Acute Alcohol Consumption-Induced let-7a Inhibition Exacerbates Hepatic Apoptosis by Regulating Rb1 in Mice. Alcohol, 85, 13-20. https://doi.org/10.1016/j.alcohol.2019.10.008 |
[61] | Caruso, S., O’Brien, D.R., Cleary, S.P., et al. (2021) Genetics of Hepatocellular Carcinoma: Approaches to Explore Molecular Diversity. Hepatology, 73, 14-26. https://doi.org/10.1002/hep.31394 |
[62] | 国胜文, 童媛媛, 柏利婷, 等. 铁死亡及其在器官缺血再灌注损伤中作用研究进展[J]. 中国体外循环杂志, 2020, 18(4): 248-250. |
[63] | Albrecht, S.C., Barata, A.G., Gro?hans, J., et al. (2011) In Vivo Mapping of Hydrogen Peroxide and Oxidized Glutathione Reveals Chemical and Regional Specificity of Redox Homeostasis. Cell Metabolism, 14, 819-829.
https://doi.org/10.1016/j.cmet.2011.10.010 |
[64] | Lamas-Paz, A., Hao, F., Nelson, L.J., et al. (2018) Alcoholic Liver Disease: Utility of Animal Models. World Journal of Gastroenterology, 24, 5063-5075. https://doi.org/10.3748/wjg.v24.i45.5063 |