全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类非线性SDE的解的存在唯一性及其显式解
Existence and Uniqueness of Solutions for a Class of Nonlinear SDE and Their Explicit So-lutions

DOI: 10.12677/AAM.2022.115311, PP. 2927-2932

Keywords: 非线性随机微分方程,解的存在性和唯一性,Holder不等式,Gronwall不等式,显式解
Nonlinear Stochastic Differential Equations
, Existence and Uniqueness of Solutions, Holder Inequality, Gronwall Inequality, Explicit Solution

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文运用Holder不等式、Gronwall不等式等基础工具,从简单的常系数线性随机微分方程出发,通过取积分因子,将非线性随机微分方程变成确定性的微分方程,再经过适当变换,得到它的解,以此证明解的存在性和唯一性。
This paper uses Holder inequality, Gronwall inequality and other basic tools, starting from a simple linear stochastic differential equation with constant coefficients, by taking the integral factor, the nonlinear stochastic differential equation is transformed into a deterministic differential equation, and then through appropriate transformation, we get its solution, so as to prove the existence and uniqueness of the solution.

References

[1]  冉启康. 金融随机数学基础[M]. 北京: 机械工业出版社, 2017: 191-197.
[2]  冯玲, 方杰. 随机方程及其在金融中的应用[M]. 北京: 中国人民大学出版社, 2020: 199-206, 222-229.
[3]  胡适耕, 黄乘明, 吴付科. 随机微分方程[M]. 北京: 科学出版社, 2008: 35-58, 85-89.
[4]  Mao, X.R. (2007) Stochastic Differential Equations and Applica-tions. 2nd Edition, Horwood Publishing Limited, Chichester, 51-59.
[5]  周德云, 方学毅, 译. 随机微分对策理论与应用[M]. 北京: 国防工业出版社, 2017: 20-23.
[6]  李朋林, 陈生瑞. 非线性随机微分方程解的存在唯一性[J]. 工程数学学报, 1997(3): 62-66.
[7]  Mao, X.R. (1994) Exponential Stability of Stochastic Differential Equations. Mar-cel Dekker, New York, 94-132.
[8]  蒲兴成, 张毅. 随机微分方程及其在数理金融中的应用[M]. 北京: 科学出版社, 2010: 6-8.
[9]  Tvedt, J. (2003) Shipping Market Models and the Specification of Freight Rate Processes. Maritime Economics and Logistics, 5, 327-346.
https://doi.org/10.1057/palgrave.mel.9100085

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133