全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

复矩阵的复对称性
Complex Symmetries of Complex Matrices

DOI: 10.12677/AAM.2022.115310, PP. 2919-2926

Keywords: 复矩阵,共轭算子,复对称算子
Complex Matrix
, Conjugate Operator, Complex Symmetric Operator

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要研究复矩阵的复对称问题。通过将2 × 2复矩阵转化为上三角矩阵,研究上三角矩阵的共轭算子,再根据原复矩阵酉等价于上三角矩阵以及它的每一个位置去构造共轭算子,使得这个复矩阵关于此共轭算子是复对称的,进而证明出任意2 × 2复矩阵都是复对称的。
In this paper, complex symmetry of complex matrices is studied. By transforming 2 × 2 complex matrix into upper triangular matrix, the conjugate operator of the upper triangular matrix is stud-ied, and then the conjugate operator is constructed according to the unitary equivalent of the origi-nal complex matrix to the upper triangular matrix and every position of it, so that the complex ma-trix is complex symmetric with respect to the conjugate operator, and then it is proved that any 2 × 2 complex matrix is complex symmetric.

References

[1]  Garcia, S.R. and Putinar, M. (2006) Complex Symmetric Operators and Applications. Transactions of the American Mathematical Society, 358, 1285-1315.
https://doi.org/10.1090/S0002-9947-05-03742-6
[2]  Garcia, S.R. and Putinar, M. (2007) Complex Symmetric Operators and Applications II. Transactions of the American Mathematical So-ciety, 359, 3913-3931.
https://doi.org/10.1090/S0002-9947-07-04213-4
[3]  Tener, J.E. (2008) Unitary Equiva-lence to a Complex Symmetric Matrix: An Algorithm. Journal of Mathematical Analysis and Applications, 341, 640-648.
https://doi.org/10.1016/j.jmaa.2007.10.029
[4]  Balayan, L. and Garcia, S.R. (2010) Unitary Equivalence to a Complex Symmetric Matrix: Geometric Criteria. Operators and Matrices, 4, 53-76.
https://doi.org/10.7153/oam-04-02
[5]  Garcia, S.R., Poore, D.E. and Wyse, M.K. (2011) Unitary Equivalence to a Complex Symmetric Matrix: A Modulus Criterion. Operators and Matrices, 5, 273-287.
https://doi.org/10.7153/oam-05-19
[6]  Garcia, S.R., Poore, D.E. and Tener, J.E. (2012) Unitary Equivalence to a Complex Symmetric Matrix: Low Dimensions. Linear Algebra and Its Applications, 437, 271-284.
https://doi.org/10.1016/j.laa.2012.01.029
[7]  Garcia, S.R. and Wogen, W.R. (2009) Complex Symmetric Partial Isometries. Journal of Functional Analysis, 257, 1251-1260.
https://doi.org/10.1016/j.jfa.2009.04.005
[8]  李春光. 复对称算子及相关问题[D]: [博士学位论文]. 长春: 吉林大学, 2012.
[9]  陈泳, 赖丽玲, 梁金金. 一类H-Toeplitz算子的复对称性[J]. 浙江科技学院学报, 2022, 34(1): 1-6+51.
[10]  Holleman, C., McClatchey, T. and Thompson, D. (2017) Binormal, Complex Symmetric Operators. Functional Analysis.
https://arxiv.org/abs/1705.04882
[11]  刘思彤, 贾思怡, 李然. 复矩阵的上三角化[J]. 理论数学, 2022, 12(4): 532-539.
https://doi.org/10.12677/PM.2022.124059

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133