|
第一性原理计算Ti元素含量对高熵合金AlFeTixCrZnCu的力学性能的影响
|
Abstract:
已有研究表明AlFeTiCrZnCu高熵合金是简单的立方晶体结构,为了进一步研究元素含量对其的影响,本文采用基于平面波赝势,并结合广义梯度近似(GGA)的第一性原理密度泛函理论从头计算方法,在立方结构晶胞的单个原子上用虚拟晶体近似(VCA)的方法建立高熵合金长程结构的固溶体模型,计算了高熵合金AlFeTixCrZnCu在Ti元素含量不同时的密度、晶格常数、弹性常数、弹性模量及生成热。计算结果表明,高熵合金AlFeTixCrZnCu的晶格常数随着Ti元素含量的增大而增大,密度随之减小;Ti元素含量的增加可以适当提高高熵合金AlFeTixCrZnCu的力学稳定性;高熵合金AlFeTixCrZnCu的脆/韧性也因为Ti元素含量不同或是脆/韧性判据不同而有所差异;高熵合金AlFeTixCrZnCu的体系稳定性及热力学稳定性并没有随着Ti元素含量的增加而改变,只是有所下降。
Previous studies have shown that AlFeTiCrZnCu high entropy alloys (HEAs) are simple cubic crystal structure. In order to future study the effect of Ti content on high entropy alloys, the lattice parameter, mass density, elastic constant, elastic modulus, and the heats of formation for the high entropy alloys AlFeTixCrZnCu with the different Ti content were studied by density functional theory of first principle and plane-wave pseudopotential technique with generalized gradient approximation (GGA). The crystal structure was built with the Virtual Crystal Approximation (VCA). The calculated results indicate that the lattice parameter of HEA AlFeTixCrZnCu increases with the increasing mole fraction of Ti, and the mass density decreases. The mechanical stability of HEA AlFeTixCrZnCu can be improved with the increase of Ti. The brittleness/toughness of HEA AlFeTixCrZnCu also varies with the content of Ti or the brittleness/toughness criterion. The system stability and thermodynamic stability of HEA AlFeTixCrZnCu did not change with the increase of Ti, but only decrease.
[1] | Malik, A.S., Boyko, O., Atkar, N. and Young, W.F. (2001) A Comparative Study of MR Imaging Profile of Titanium Pedicle Screws. Acta Radiologica, 42, 291-293. https://doi.org/10.1080/028418501127346846 |
[2] | Yeh, J.W., Chen, S.K., Lin, S.J., et al. (2004) Formation of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Alloys with Multiprincipal Metallic Elements. Metallurgical and Materials Transactions A, 35, 2533-2536.
https://doi.org/10.1007/s11661-006-0234-4 |
[3] | Huang, P.K., Yeh, J.W., Shun, T.T., et al. (2004) Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating. Advanced Engineering Materials, 6, 74-78.
https://doi.org/10.1002/adem.200300507 |
[4] | Yeh, J.W., Lin, S.J., Chin, T.S., et al. (2004) Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 6, 299-303.
https://doi.org/10.1002/adem.200300567 |
[5] | Hsu, C.Y., Yeh, J.W., Chen, S.K., et al. (2004) Wear Resistance and High-Temperature Compression Strength of Fcc CuCoNiCrA0.5Fe Alloy with Boron Addition. Metallurgical and Ma-terials Transactions A, 35, 1465-1469.
https://doi.org/10.1007/s11661-004-0254-x |
[6] | Mariela, F.G., Guillermo, B. and Hugo, O.M. (2012) Determination of the Transition to the High Entropy Regime for Alloys Ofrefractory Elements. Journal of Alloys and Compounds, 534, 25-31.
https://doi.org/10.1016/j.jallcom.2012.04.053 |
[7] | Wang, W.R., Wang, W.L., Wang, S.C., et al. (2012) Effects of Al Addition on the Microstructure and Mechanical Property of AlxCoCrFeNi High-Entropy Alloys. Intermetallics, 26, 44-51.
https://doi.org/10.1016/j.intermet.2012.03.005 |
[8] | Senkov, O.N., Scott, J.M., Sendova, S.V., et al. (2011) Micro-structure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy. Journal of Alloys and Compounds, 509, 6043-6048.
https://doi.org/10.1016/j.jallcom.2011.02.171 |
[9] | Tong, C.J., Chen, Y.L., Yeh, J.W., et al. (2005) Microstructure Characterization of AlxCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements. Mctallurgical and Mate-rials Trasactions A, 36, 881-893.
https://doi.org/10.1007/s11661-005-0283-0 |
[10] | Tong, C.J., Chen, M.R., Yeh, J.W., et al. (2005) Mechanical Per-formance of the AlxCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements. Metallurgical and Materials Transactions A, 36, 1263-1271.
https://doi.org/10.1007/s11661-005-0218-9 |
[11] | Wu, J.M., Lin, S.J., Yeh, J.W., et al. (2006) Adhesive Wear Be-havior of AlxCoCrCuFeNi High-Entropy Alloys as a Function of Aluminum Content. Wear, 261, 513-519. https://doi.org/10.1016/j.wear.2005.12.008 |
[12] | Tung, C.C., Yeh, J.W., Shun, T.T., et al. (2007) on the Elemental Effect of AlCoCrCuFeNi High-Entropy Alloy System. Materials Letters, 61, 1-5. https://doi.org/10.1016/j.matlet.2006.03.140 |
[13] | Varalakshmi, S., Kamaraj, M. and Murty, B.S. (2008) Synthesis and Characterization of Nanocrystalline AlFeTiCrZnCu High Entropy Solid Solution by Mechanical Alloying. Journal of Alloys and Compounds, 460, 253-257.
https://doi.org/10.1016/j.jallcom.2007.05.104 |
[14] | Varalashmi, S., Rao, G.A., Kamaraj, M., et al. (2010) Hot Consolidation and Mechanical Properties of Nanocrystalline Equiatomic AlFeTiCrZnCu High Entropy Alloy After Mechanical Alloying. Journal of Materials Science, 45, 5158-5163.
https://doi.org/10.1007/s10853-010-4246-5 |
[15] | Li, Z., Pradeep, K.G., Deng, Y., et al. (2016) Metastable High-Entropy Dual-Phase Alloys Overcome the Strength-Ductility Trade-Off. Nature, 534, 227-230. https://doi.org/10.1038/nature17981 |
[16] | Shi, D.M., Wen, B., Roderick, M., et al. (2009) First-Principles Studies of Al-Ni Intermetallic Compounds. Journal of Solid State Chemistry, 182, 2664-2669. https://doi.org/10.1016/j.jssc.2009.07.026 |
[17] | Yang, Z., Shi, D., Wen, B., et al. (2010) First-Principle Studies of Ca-X (X=Si, Ge, Sn, Pb) Intermetallic Compounds. Journal of Solid State Chemistry, 183, 136-143. https://doi.org/10.1016/j.jssc.2009.11.007 |
[18] | Wen, B., Zhao, J., Bai, F., et al. (2008) First-Principle Studies of Al-Ru Intermetallic Compounds. Intermetallics, 16, 333-339. https://doi.org/10.1016/j.intermet.2007.11.003 |
[19] | Zhou, Y., Wen, B., Ma, Y.Q., et al. (2012) First-Principles Studies of Ni-Ta Intermetallic Compounds. Journal of Solid State Chemistry, 187, 211-218. https://doi.org/10.1016/j.jssc.2012.01.001 |
[20] | Zhu, A., Wang, J., Zhao, D., et al. (2011) Native Defects and Pr Inpurities in Orthorhombic CaTiO3 by First-Principles Calculations. Physica B: Condensed Matter, 406, 2697-2702. https://doi.org/10.1016/j.physb.2011.04.010 |
[21] | Zhu, A., Wang, J., Du, Y., et al. (2012) Effects of Zn Impurities on the Electronic Properties of Pr Doped CaTiO3. Physica B: Condensed Matter, 407, 849-854. https://doi.org/10.1016/j.physb.2011.12.096 |
[22] | Huang, G.Q. and Wang, J.X. (2012) Magnetic Behavior of Mn-Doped GaN (11-00) Film from First-Principles Calculation. Journal of Applied Physics, 111, Article ID: 43907. https://doi.org/10.1063/1.3685901 |
[23] | Wang, J.X. and Huang, G.Q. (2012) Atomic and Electronic Structure of Mn-Doped GaN (1\Bar 100) Film from First-Principles Calculations. Physica Status Solidi C, 9, 101-104. https://doi.org/10.1002/pssc.201084191 |
[24] | Segall, M.D., Lindan, J.D., Probert, J.J., et al. (2002) First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. Journal of Physics: Condensed Matter, 14, 2717-2744. https://doi.org/10.1088/0953-8984/14/11/301 |
[25] | Ramer, N.J. and Rappe, A.M. (2000) Application of a New Virtual Crystal Approach for the Study of Disordered Perovskites. Journal of Physics and Chemistry of Solid, 61, 315-320. https://doi.org/10.1016/S0022-3697(99)00300-5 |
[26] | Bellaiche, L. and Vanderbilt, D. (2000) Virtual Crystal Approximation Revisited: Application to Dielectric and Piezoelectric Properties of Perovskites. Physical Review B, 61, 7877-7882. https://doi.org/10.1103/PhysRevB.61.7877 |
[27] | Winkler, B., Pickard, C. and Milman, V. (2002) Applicability of a Quantum Mechanicalvirtual Crystal Approximation’ to Study Al/Si-Disorder. Chemical Physics Letters, 362, 266-270. https://doi.org/10.1016/S0009-2614(02)01029-1 |
[28] | Payne, M.C., Teter, M.P., Allan, D.C., et al. (1992) Iterative Minimization Techniques For ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients. Reviews of Modern Physics, 64, 1045-1097.
https://doi.org/10.1103/RevModPhys.64.1045 |
[29] | Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865 |
[30] | Hamann, D.R., Schluter, M. and Chiang, C. (1979) Norm-Conserving Pseudopotentials. Physical Review Letters, 43, 1494-1497. https://doi.org/10.1103/PhysRevLett.43.1494 |
[31] | Leung, T.C., Chan, C.T. and Harmon, B.N. (1991) Ground-State Properties of Fe, Co, Ni, and Their Monoxides: Results of the Generalized Gradient Approximation. Phys-ical Reviews B, 44, 2923-2927.
https://doi.org/10.1103/PhysRevB.44.2923 |
[32] | Nye, J.F. (1985) Physical Properties of Crystals: Their Representation by Tensors and Matrices. Physical Properties of Crystals, Oxford University Press, Oxford. |
[33] | Anderson, O.L. (1963) A Simplified Method for Calculating the Debye Temperature from Elastic Constants. Journal of Physics and Chemistry Solids, 24, 909-917. https://doi.org/10.1016/0022-3697(63)90067-2 |
[34] | Lyapin, A.G. and Brazhkin, V.V. (2002) Correlations Between the Physical Properties of the Carbon Phases Obtained at a High Pressure from C60 Fullerite. Physics of the Solid State, 44, 405-409. https://doi.org/10.1134/1.1462656 |
[35] | Pugh, S.F. (2009) XCII. Relations Between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45, 823-843.
https://doi.org/10.1080/14786440808520496. |