|
时空视角下突发事件网络舆情热度演变分析
|
Abstract:
舆情热度分析是突发事件舆情治理的重要环节,国内有很少学者有从时空视角下进行分析的。基于此,文章的网络舆情热度测量指标数据来源于百度搜索指数,选取的突发事件是新型冠状病毒感染肺炎,运用全局空间自相关分析、局部空间自相关分析和灰色关联分析等方法,分析2020-01-09~02-19中国网民对“新型冠状病毒”网络舆情热度的省域时空差异研究与影响机理研究。研究发现:全国各省网民对疫情随时间变化的网络舆情热度趋势趋于一致,广东省和山东省由于人口基数大,舆情热度排名靠前,随着封城和居家隔离政策实施,疫情的发展得到控制,疫情的舆情热度呈下降趋势;突发疫情的网络舆情热度整体上存在空间分异特征非常显著,舆情热度高低以人口密度线即胡焕庸线为界的空间分布格局,舆情热度高的主要分布在分界线以东的地区,舆情热度低的主要分布在分界线以西的地区;确诊人数、治愈人数、城市化率、互联网普及率等都与舆情热度相关,并且确诊人数是影响舆情热度的核心因素。
As an important part of public opinion management of emergencies, the temporal and spatial dif-ferences and influencing factors of public attention are rarely discussed. Therefore, based on re-al-time data of Baidu index, this paper uses real-time epidemic monitoring data and spatial analysis, spatial-temporal visualization, GRA and other methods. Analyzing China’s Provincial Spatial and temporal differences in the popularity of New Coronavirus Internet public opinion and its influenc-ing mechanism from January 9th to February 19th, 2020. The results show that: The trend of In-ternet users’ popularity of the epidemic over time tends to be consistent across the country. Due to the large population base, Guangdong Province and Shandong Province rank high in public opinion popularity. With the implementation of the city closure and home isolation policies, the develop-ment of the epidemic has been controlled, and the popularity of the epidemic decline. Overall, the novel coronavirus pneumonia epidemic network public opinion fever has significant spatial differ-entiation characteristics. The cold hot spot is obviously spatial distribution pattern with “Hu Huan-yong” line as the boundary. The hot spots are mostly located in the east of the line, and the cold spots are located in the west of the line. The number of confirmed cases, cured cases, urbanization rate and Internet penetration rate are all related to the popularity of public opinion, and the num-ber of confirmed cases is the core factor affecting the popularity of public opinion.
[1] | Chen, S., Yang, J., Yang, W., et al. (2020) COVID-19 Control in China during Mass Population Movements at New Year. The Lancet, 395, 764-766. https://doi.org/10.1016/S0140-6736(20)30421-9 |
[2] | 冯明翔, 方志祥, 路雄博, 等. 交通分析区尺度上的COVID-19时空扩散推估方法——以武汉市为例[J]. 武汉大 学学报?信息科学版, 2020, 45(5): 651-657, 681. |
[3] | Altmann, D.M., Douek, D.C. and Boyton, R.J. (2020) What Policy Makers Need to Know about COVID-19 Protective Immunity. The Lancet, 395, 1527-1529. https://doi.org/10.1016/S0140-6736(20)30985-5 |
[4] | Prem, K., Liu, Y., Russell, T.W., et al. (2020) The Effect of Control Strategies to Reduce Social Mixing on Outcomes of the COVID-19 Epidemic in Wuhan, China: A Modelling Study. The Lancet Public Health, 5, e261-e270.
https://doi.org/10.1016/S2468-2667(20)30073-6 |
[5] | 王艳东, 李昊, 王腾, 等. 基于社交媒体的突发事件应急信息挖掘与分析[J]. 武汉大学学报?信息科学版, 2016, 41(3): 290-297. |
[6] | Garrett, L. (2020) COVID-19: The Medium Is the Message. The Lancet, 395, 942-943.
https://doi.org/10.1016/S0140-6736(20)30600-0 |
[7] | 黄发良, 冯时, 王大玲, 等. 基于多特征融合的微博主题情感挖掘[J]. 计算机学报, 2017, 40(4): 872-888. |
[8] | 陈梓, 高涛, 罗年学, 等. 反映自然灾害时空分布的社交媒体有效性探讨[J]. 测绘科学, 2017, 42(8): 44-48, 129. |
[9] | 黄晓斌, 赵超. 文本挖掘在网络舆情信息分析中的应用[J]. 情报科学, 2009, 27(1): 94-99. |
[10] | 孟天广, 赵娟. 大数据时代网络搜索行为与公共关注度——基于2011-2017年百度指数的动态分析[J]. 学海, 2019(3): 41-48. |
[11] | 莫国芳, 吴瑛, 元兮. 云南流动人口与艾滋病扩散[J]. 人口与经济, 2004(2): 14-19. |
[12] | Olson, D.R., Konty, K.J., Paladini, M., Viboud, C. and Simonsen, L. (2013) Reassessing Google Flu Trends Data for Detection of Seasonal and Pandemic Influenza: A Comparative Epide-miological Study at Three Geographic Scales. PLoS Computational Biology, 9, e1003256. https://doi.org/10.1371/journal.pcbi.1003256 |
[13] | Polgreen, P.M., Chen, Y., Pennock, D.M., Nelson, F.D. and Weinstein, R.A. (2008) Using Internet Searches for Influenza Surveillance. Clinical Infectious Diseases, 47, 1443-1448. https://doi.org/10.1086/593098 |
[14] | 曲卫华, 颜志军. 环境污染, 经济增长与医疗卫生服务对公共健康的影响分析——基于中国省际面板数据的研究[J]. 中国管理科学, 2015, 23(7): 166-176. |
[15] | Qu, W.-H. and Yan, Z.-J. (2015) The Influence of Environmental Pollution, Economic Growth and Healthcare Services to Public Health Based on China’s Provincial Panel Data. Chinese Journal of Management Science, 23, 166-176. |
[16] | Ripberger, J.T. (2011) Cap-turing Curiosity: Using Internet Search Trends to Measure Public Attentiveness. Policy Studies Journal, 39, 239-259. https://doi.org/10.1111/j.1541-0072.2011.00406.x |
[17] | Salathe, M., Bengtsson, L., Bodnar, T.J., Brewer, D.D., Brownstein, J.S., Buckee, C. and Vespignani, A. (2012) Digital Epidemiology. PLoS Computational Biology, 8, e1002616. https://doi.org/10.1371/journal.pcbi.1002616 |
[18] | Scharkow, M. and Vogelgesang, J. (2011) Measuring the Public Agenda Using Search Engine Queries. International Journal of Public Opinion Research, 23, 104-113. https://doi.org/10.1093/ijpor/edq048 |
[19] | Scheitle, C.P. (2011) Google’s Insights for Search: A Note Evaluating the Use of Search Engine Data in Social Research. Social Science Quarterly, 92, 285-295. https://doi.org/10.1111/j.1540-6237.2011.00768.x |
[20] | Signorini, A., Segre, A.M. and Polgreen, P.M. (2011) The Use of Twitter to Track Levels of Disease Activity and Public Concern in the US during the Influenza A H1N1 Pandemic. PLoS ONE, 6, e19467.
https://doi.org/10.1371/journal.pone.0019467 |
[21] | 许小可, 文成, 张光耀, 等. 新冠肺炎暴发前期武汉外流人口的地理去向分布及影响[J]. 电子科技大学学报, 2020, 49(1): 1-6. |
[22] | 张旭阳, 李丹珉, 谢耘耕. 媒介、网民、政府在舆情事件中的参与角色与作用研究——基于3600起舆情事件的实证分析[J]. 新闻界, 2018(6): 56-63. |
[23] | 李静, 谢耘耕. 网络舆情热度的影响因素研究——基于2010-2018年10,600起舆情事件的实证分析[J]. 新闻界, 2020(2): 37-45. |
[24] | 黄怡璇, 谢健民, 秦琴, 等. 影响网络舆情热度评价的主要因素识别研究[J]. 情报科学, 2017, 35(10): 49-54, 62. |
[25] | 滕文杰. 突发公共卫生事件网络舆情网民关注度区域分布研究[J]. 中国卫生事业管理, 2015, 32(5): 393-396. |