|
玉米秸秆与气化焦油共混成型的机械特性分析
|
Abstract:
以焦油为粘结剂、玉米秸秆为原料制备生物质成型燃料,研究了焦油含量、含水率、成型压力、原料粒径和成型温度对成型块机械特性的影响。研究结果表明,当焦油含量从0%增加到12%时,成型燃料抗跌强度从83.18%增加为99.99%,密度从1.06 g/cm3增加为1.36 g/cm3;当含水率从4%增加到20%时,抗跌强度从90.56%增加到97.15%,密度逐渐减小;当成型压力从2 MPa增加到4 MPa时,抗跌强度降低了0.33%,密度无明显变化;当原料尺寸从小粒径增加到3 mm时,抗跌强度和密度呈降低趋势;升高成型温度有利于增加抗跌强度和密度。
Biomass molding fuel was prepared with both tar as binder and corn straw as raw materials. The effects of tar content, moisture content, molding pressure, material granularity and molding temperature on mechanical properties of molding fuel were studied. The results show that when the tar content increases from 0% to 12%, the falling strength of the molding fuel increases from 83.18% to 99.99%, and the density increases from 1.06 g/cm3 to 1.36 g/cm3; when the water content increases from 4% to 20%, the falling strength increases from 90.56% to 97.15%, and the density decreases gradually; when the molding pressure increases from 2 MPa to 4 MPa, the falling strength decreases by 0.33% and the density has no obvious change; when the material granularity increases from small particle size to 3 mm, the falling strength and density decrease; Increasing the molding temperature is beneficial to increase the falling strength and density.
[1] | 王明峰, 李楚仪, 姜洋, 李伟振, 任永志, 蒋恩臣. 稻壳与气化焦油混合成型的特性研究[J]. 太阳能学报, 2021, 42(11): 373-378. |
[2] | 陈泽宇, 邢献军, 李永玲, 糜梦星, 张学飞, 朱成成. 城市生活垃圾与生物质成型燃料混合热解特性及动力学研究[J]. 太阳能学报, 2020, 41(10): 340-346. |
[3] | 刘煜康. 废塑料与生物质混合成型-热解成炭的特性研究[D]: [硕士学位论文]. 昆明: 昆明理工大学, 2020. |
[4] | 张慧敏. 生物质与皮革污泥混合及成型燃料热重分析[D]: [硕士学位论文]. 济南: 山东大学, 2013. |
[5] | 李运泉. 生物质成型燃料燃烧特性及烟气排放规律研究[D]: [硕士学位论文]. 广州: 华南理工大学, 2015. |
[6] | 杏艳. 秸秆类生物质的固态酶解预处理及发酵产氢的研究[D]: [博士学位论文]. 郑州: 郑州大学, 2008. |
[7] | 周春梅, 来小丽. 生物质秸秆成型工艺的试验研究[J]. 可再生能源, 2009, 27(5): 37-41. |
[8] | Stelte, W., Holm, J., Sanadi, A.R., et al. (2010) A Study of Bonding and Failure Mechanisms in Fuel Pellets from Different Biomass Resources. Biomass and Bioenergy, 35, 910-918. https://doi.org/10.1016/j.biombioe.2010.11.003 |
[9] | Sun, C.C. (2011) Decoding Powder Tablet Ability: Roles of Particle Adhesion and Plasticity. Journal of Adhesion Science and Technology, 25, 483-499. https://doi.org/10.1163/016942410X525678 |
[10] | 姬爱民, 赵荣煊, 李海英, 等. 秸秆类生物质压力成型过程影响因素研究[J]. 农机化研究, 2017, 39(2): 220-225. |
[11] | 郭鲤, 蔡晓兰, 易峰, 周蕾. 成型压力对Ti-48at%Al材料致密度和硬度的影响[J]. 热加工工艺, 2014, 43(14): 36-38+43. |
[12] | 夏光华, 查丽霞, 谭训彦, 朱小鑫, 谢琳. 成型压力对Al2O3-TiC/Fe基金属陶瓷材料致密度及力学性能的影响[J]. 陶瓷学报, 2014, 35(5): 512-516. |
[13] | 吉登高, 王祖讷, 张丽娟, 等. 粉煤成型原料粒度组成的试验研究[J]. 煤炭学报, 2005, 30(1): 100-103. |
[14] | 高名旺, 董玉平. 生物质热压成型温度场数值模拟[J]. 可再生能源, 2004(2): 23-25. |
[15] | 李震, 王宏强, 高雨航, 闫莉, 王鹏, 德雪红. 沙柳生物质燃料颗粒致密成型粘结机理研究[J]. 农业工程学报, 2019, 35(21): 235-241. |