全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

振动对流体动压轴承设计性能的影响研究
Research on Effect of Vibration on the Design Performance of Hydrodynamic Bearing

DOI: 10.12677/APP.2022.125033, PP. 293-298

Keywords: 轴承,转子轴承系统,振动,有限元分析
Bearing
, Rotor Bearing System, Vibration, Finite Element Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

流体动压轴承广泛应用于机床的主轴系统中,起着定位和支撑的作用,与滚动轴承相比,具有承载能力大、整体尺寸小、摩擦功耗低、耐冲击性能好、抗击振动性强、旋转精度高等显著特点。过去的轴承设计只考虑了旋转摩擦发热引起的温升,但轴承内振动耗散引起的额外温升使油膜粘度下降,影响了所有的轴承特性,因此,本文讨论了轴振动引起的轴承设计特性对流体动压颈轴承的影响。轴承升温除了旋转摩擦产生的热量外,还必须考虑振动耗散引起的升温,比较了振动发热对动压颈轴承特性参数的影响,提出了考虑振动耗散引起的升温的动压颈轴承的设计。因此,以五个设计案例的数值模拟结果为依据,讨论了主轴振动对轴颈轴承性能的影响。
Liquid dynamic pressure bearings are widely used in the spindle system of machine tools, playing the role of positioning and support. Compared with rolling bearings, they have remarkable features such as large load capacity, small overall size, low frictional power consumption, good impact resistance, strong resistance to shock vibration, and high rotational accuracy. In the past, the bearing design only considered the temperature rise caused by the heat of rotating friction, but the additional temperature rise caused by the dissipation of vibration in the bearing caused the oil film viscosity to decrease, which affected all the bearing characteristics; therefore, this paper discusses the bearing design characteristics caused by the shaft vibration on the influence of oil dynamic pressure neck bearing. Based on the fact that the bearing temperature rise must consider the heat rise caused by vibration dissipation in addition to the heat generated by rotational friction, the effect of vibration heat generation on the characteristic parameters of the dynamic pressurized neck bearing is compared and the design of the dynamic pressurized neck bearing considering the heat rise caused by vibration dissipation is proposed. Therefore, the effects of spindle vibration on journal bearing performance are discussed based on the numerical simulation results of five design cases.

References

[1]  张国渊, 梁茂檀, 赵洋洋, 等. 低温轴承润滑模型及快速起动理论与试验[J]. 机械工程学报, 2022, 58(1): 162-171.
https://doi.org/10.3901/JME.2022.01.162
[2]  孟晶, 戴惠良, 方波, 等. 基于FLUENT的液体动静压轴承油膜特性的分析[J]. 液压与气动, 2012(8): 17-21.
https://doi.org/10.3969/j.issn.1000-4858.2012.08.006
[3]  Zhang, G., Zhao, Y., Zhao, W., et al. (2020) An Experimental Study on the Cryogenic Face Seal at Different Inlet Pressures. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 234, 1470-1481.
https://doi.org/10.1177/1350650119896455
[4]  Lee, E. and Gunzburger, M.D. (2011) A Finite Element, Filtered Eddy-Viscosity Method for the Navier-Stokes Equations with Large Reynolds Number. Journal of Mathematical Analysis & Applications, 385, 384-398.
https://doi.org/10.1016/j.jmaa.2011.06.050
[5]  Ciuperca, I.S., Feireisl, E., Jai, M. and Petrov, A. (2018) A Rigorous Derivation of the Stationary Compressible Reynolds Equation via the Navier-Stokes Equations. Mathematical Models and Methods in Applied Sciences, 28, 697-732.
https://doi.org/10.1142/S0218202518500185
[6]  Budynas, R.G. and Nisbett, K.J. (2014) Shigley’s Mechanical Engineering Design. ?McGraw Hill, New York.
[7]  Arif, M., Kango, S., Shukla, D.K. and Sharma, N. (2021) Effect of Optimized Slip and Texture Zone on the Performance of Hydrodynamic Journal Bearing. In: Parwani, A.K., Ramkumar, P., Abhishek, K. and Yadav, S.K., Eds., Recent Advances in Mechanical Infrastructure, Springer, Singapore, 433-442.
https://doi.org/10.1007/978-981-33-4176-0_37
[8]  刘建奇. 非等温条件下微型动压气体轴承润滑特性分析[D]: [硕士学位论文]. 西安: 西安理工大学, 2018.
[9]  张美红, 董皓, 赵晓龙, 等. 矩形静压推力轴承表面平面度与粗糙度的综合分形模拟[J]. 轴承. 2018(4): 55-58.
[10]  郭玉鹏, 张艳芹, 邓力源, 等. 不同腔形结构静压轴承油膜温升特性对比分析[J]. 哈尔滨理工大学学报. 2018, 23(4): 55-58+63.
https://doi.org/10.15938/j.jhust.2018.04.010
[11]  王禹, 王连吉, 王续跃. 液体静压推力轴承设计与FLUENT仿真分析[J]. 机械设计与制造, 2017(9): 220-224.
https://doi.org/10.3969/j.issn.1001-3997.2017.09.058
[12]  陈磊, 吴文凯, 蒋春梅, 等. 精密离心机液体静压轴承设计[J]. 机械设计与研究, 2014, 30(6): 34-36.
https://doi.org/10.13952/j.cnki.jofmdr.2014.0181
[13]  李峰, 邓四二, 张文虎. 频繁摆动工况下球轴承打滑特性研究[J]. 机械工程学报. 2021, 57(1): 168-178.
https://doi.org/10.3901/JME.2021.01.168
[14]  张进华, 方斌, 朱永生, 等. 基于球-滚道非完全接触状态下的球轴承载荷分布计算及刚度特性研究[J]. 机械工程学报. 2020, 56(9): 73-83.
https://doi.org/10.3901/JME.2020.09.073
[15]  景新, 曹宏瑞, 陈雪峰. 保持架打滑对航空发动机主轴承故障特征频率的影响[J]. 航空动力学报. 2019, 34(5): 1145-1152.
https://doi.org/10.13224/j.cnki.jasp.2019.05.021
[16]  张志强, 王黎钦, 张传伟, 等. 变工况过程中球轴承保持架的稳定性[J]. 工程科学学报. 2019, 41(11): 1458-1464.
https://doi.org/10.13374/j.issn2095-9389.2018.11.30.002
[17]  石伟. 滚动轴承的早期故障诊断及寿命预测[D]: [硕士学位论文]. 北京: 华北电力大学(北京), 2021.
https://doi.org/10.27140/d.cnki.ghbbu.2021.001192
[18]  马子魁, 陈文华. 基于滚动蠕滑理论的球轴承摩擦力矩计算方法[J]. 机械工程学报, 2017, 53(22): 219-224.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133