全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于K-Means聚类分析的汽车行驶工况构建
Construction of Vehicle Driving Cycle Based on K-Means Cluster Analysis

DOI: 10.12677/MOS.2022.113078, PP. 842-851

Keywords: K-Means聚类分析,汽车行驶工况,主成分分析,运动学片段
K-Means Cluster Analysis
, Vehicle Driving Cycle, Principal Component Analysis, Kinematic Fragment

Full-Text   Cite this paper   Add to My Lib

Abstract:

为构建合理的汽车行驶工况,以给定的轻型汽车行驶数据为基础,分别运用运动学片段分析法、主成分分析法和K-均值聚类分析法对实测数据进行降维和分类,并结合相关系数法从各类运动学片段库中选取具有代表性的片段,构建反映汽车行驶特征的汽车行驶工况曲线。最后,为验证所构建的汽车行驶工况的有效性和精确性,计算作为评价体系的8个特征参数的相对误差和总体误差。结果表明,构建的汽车行驶工况曲线所反映的汽车运动特征在一定程度上可以代表数据源对应的特征,所构建的行驶工况具有有效性和精确性。
In order to construct a reasonable driving cycle of the car, on the basis of a given light vehicle driving data, respectively using kinematics fragment analysis, principal component analysis (PCA) and K-Means clustering analysis of measured data for dimensionality reduction and classification, combined with the correlation coefficient method and the cumulative frequency method from the various segments in the library to select representative kinematics fragments, so as to build a curve of vehicle driving cycle which can reflect the characteristics of the car’s driving. Finally, in order to verify the validity and accuracy of the constructed vehicle driving cycle, the relative errors and total errors of the eight characteristic parameters of the evaluation system were calculated. The results show that motion characteristics of the vehicle reflected in the constructed vehicle driving cycle curve can represent the corresponding characteristics of the collected data sources to a certain extent, and this constructed driving cycle is effective and accurate.

References

[1]  李耀华, 任田园, 邵攀登, 宋伟萍, 李忠玉, 苟琦智. 基于马尔可夫链的西安市城市公交工况构建[J]. 中国科技论文, 2019, 14(2): 121-128.
[2]  Lin, J. and Niemeier, D.A. (2003) Regional Driving Characteristics, Regional Driving Cycles. Transportation Research Part D, 8, 361-381.
https://doi.org/10.1016/S1361-9209(03)00022-1
[3]  Fotouhi, A. and Montazerigh, M. (2013) Tehran Driving Cycle Development Using the K-Means Clustering Method. Scientia Iranica, 20, 286-293.
[4]  胡志远, 秦艳, 谭丕强, 楼狄明. 基于大样本的上海市乘用车行驶工况构建[J]. 同济大学学报(自然科学版), 2015, 43(10): 1523-1527.
[5]  彭育辉, 杨辉宝, 李孟良, 乔学齐. 基于K-均值聚类分析的城市道路汽车行驶工况构建方法研究[J]. 汽车技术, 2017(11): 13-18.
[6]  刘子谭, 朱平, 刘旭鹏, 刘钊. K均值聚类改进与行驶工况构建研究[J]. 汽车技术, 2019(11): 57-62.
[7]  姜平, 石琴, 陈无畏. 聚类和马尔科夫方法结合的城市汽车行驶工况构建[J]. 中国机械工程, 2010, 21(23): 2893-2897.
[8]  苗强, 孙强, 白书战, 闫伟, 李国祥. 基于聚类和马尔可夫链的公交车典型行驶工况构建[J]. 中国公路学报, 2016, 29(11): 161-169.
[9]  曹骞, 李君, 曲大为. 大连市乘用车典型行驶工况的构建[J]. 上海交通大学学报, 2018, 52(11): 1537-1542.
[10]  李杰, 王晓佳, 朱建军, 张翠平, 汪洋. 太原市公交车行驶工况的构建[J]. 中国科技论文, 2018, 13(19): 2223-2227.
[11]  宋怡帆. 基于聚类和Python语言的深圳市城市道路车辆行驶工况构建[D]: [硕士学位论文]. 西安: 长安大学, 2018.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133