全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

两带超导体边界效应及其对二硼化镁薄膜临界温度的影响研究
Boundary Effect of Two-Band Superconductors and Its Impact on the Critical Temperature of MgB2 Thin Film

DOI: 10.12677/CMP.2022.112006, PP. 49-56

Keywords: 两带超导体,边界效应,二硼化镁
Two-Band Superconductor
, Boundary Effect, Magnesium Diboride

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于两带Bogoliubov-de Gennes理论,我们针对两带超导体–绝缘体(或真空)之间的边界效应展开研究。在两带Ginzburg-Landau自由能表达式基础上引入新的表面项,得到其对超导序参量影响的特征尺度。在考虑边界效应的影响下,我们对二硼化镁超导薄膜临界温度随厚度的变化关系进行了理论计算,所得结果与实验数据相符。
Based on two-band Bogoliubov-de Gennes theory, we study the boundary effect of an interface between two-band superconductor and insulator (or vacuum). New boundary terms are introduced into two-band Ginzburg-Landau free energy, and the characteristic length scale of boundary effect can be estimated. Taking into account this boundary effect, we study the critical temperature dependence of film thickness for magnesium diboride. Our numerical results are in good agreement with the experimental data measured in this material.

References

[1]  Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. and Akimitsu, J. (2001) Superconductivity at 39 K in Magnesium Diboride. Nature, 410, 63-64.
https://doi.org/10.1038/35065039
[2]  Kong, Y., Dolgov, O.V., Jepsen, O. and Andersen, O.K. (2001) Electron-Phonon Interaction in the Normal and Superconducting States of MgB2. Physical Review B, 64, Article ID: 020501(R).
https://doi.org/10.1103/PhysRevB.64.020501
[3]  Liu, A.Y., Mazin, I.I. and Kortus, J. (2001) Beyond Eliashberg Superconductivity in MgB2: Anharmonicity, Two-Phonon Scattering, and Multiple Gaps. Physical Review Letters, 87, Article ID: 087005.
https://doi.org/10.1103/PhysRevLett.87.087005
[4]  Brinkman, A., Golubov, A.A., Rogalla, H., Dolgov, O.V., Kortus, J., Kong, Y., Jepsen, O. and Andersen, O.K. (2002) Multiband Model for Tunneling in MgB2 Junctions. Physical Review B, 65, Article ID: 180517(R).
https://doi.org/10.1103/PhysRevB.65.180517
[5]  Mazin, I.I. and Kortus, J. (2002) Interpretation of the de Haasvan Alphen Experiments in MgB2. Physical Review B, 65, Article ID: 180510(R).
https://doi.org/10.1103/PhysRevB.65.180510
[6]  Szabo, P., Samuely, P., Kacmarcik, J., Klein, T., Marcus, J., Fruchart, D., Miraglia, S., Marcenat, C. and Jansen, A.G. M. (2001) Evidence for Two Superconducting Energy Gaps in MgB2 by Point-Contact Spectroscopy. Physical Review Letters, 87, Article ID: 137005.
https://doi.org/10.1103/PhysRevLett.87.137005
[7]  Giubileo, F., Roditchev, D., Sacks, W., Lamy, R., Thanh, D.X., Klein, J., Miraglia, S., Fruchart, D., Marcus, J. and Monod, Ph. (2001) Two-Gap State Density in MgB2: A True Bulk Property or A Proximity Effect? Physical Review Letters, 87, Article ID: 177008.
https://doi.org/10.1103/PhysRevLett.87.177008
[8]  Bugoslavsky, Y., Miyoshi, Y., Perkins, G.K., Berenov, A.V., Lockman, Z., MacManus-Driscoll, J.L., Cohen, L.F., Caplin, A.D., Zhai, H.Y., Paranthaman, M.P., Christen, H.M. and Blamire, M.(2002) Structure of the Superconducting Gap in MgB2 from Point-Contact Spectroscopy. Super-conductor Science and Technology, 15, 526-532.
https://doi.org/10.1088/0953-2048/15/4/308
[9]  Bouquet, F., Fisher, R.A., Phillips, N.E., Hinks, D.G. and Jorgensen, J.D. (2001) Specific Heat of Mg11B2: Evidence for a Second Energy Gap. Physical Review Letters, 87, Article ID: 047001.
[10]  Cherednichenko, S., Acharya, N., Novoselov, E. and Drakinskiy, V. (2021) Low Kinetic Inductance Superconducting MgB2 Nanowires with a 130 ps Relaxation Time for Single-photon Detection Applications. Superconductor Science and Technology, 34, Article ID: 044001.
https://doi.org/10.1088/1361-6668/abdeda
[11]  Polakovic, T., Armstrong, W., Karapetrov, G., Meziani, Z.E. and Novosad, V. (2020) Unconventional Applications of Superconducting Nanowire Single Photon Detectors. Nanomaterials, 10, Article No. 1198.
https://doi.org/10.3390/nano10061198
[12]  Shibata, H. (2021) Review of Superconducting Nanostrip Photon Detectors using Various Superconductors. IEICE Transactions on Electronics, 104, 429-434.
https://doi.org/10.1587/transele.2020SUI0001
[13]  Xi, X.X., Zeng, X.H., Pogrebnyakov, A.V., Xu, S.Y., Li, Q., Zhong, Y., Brubaker, C.O., Liu, Z.K., Lysczek, E.M., Redwing, J.M., Lettieri, J., Schlom, D.G., Tian, W. and Pan, X.Q. (2003) In Situ Growth of MgB2 Thin Films by Hybrid Physical-Chemical Vapor Deposition. IEEE Transactions on Applied Superconductivity, 13, 3233-3237.
https://doi.org/10.1109/TASC.2003.812209
[14]  Xi, X.X., Pogrebnyakov, A.V., Zeng, X.H., Redwing, J.M., Xu, S.Y., Li, Q., Liu, Z., Lettieri, K.J., Vaithyanathan, V., Schlom, D.G., Christen, H.M., Zhai, H.Y. and Goyal, A.(2004) Progress in the Deposition of MgB2 Thin Films. Superconductor Science and Technology, 17, S196-S201.
https://doi.org/10.1088/0953-2048/17/5/021
[15]  Zeng, X.H., Pogrebnyakov, A.V., Kotcharov, A., Jones, J.E., Xi, X.X., Lysczek, E.M., Redwing, J.M., Xu, S.Y., Li, Q., Lettieri, J., Schlom, D.G., Tian, W., Pan, X.Q. and Liu, Z.K. (2002) In Situ Epitaxial MgB2 Thin Films for Superconducting Electronics. Nature Materials, 1, 35-35.
https://doi.org/10.1038/nmat703
[16]  Chen, Y.L., Yang, C., Jia, C.Y., Feng, Q.R. and Gan, Z.Z. (2016) Thickness Dependence of Jc (0) in MgB2 Films. Physica C, 525-526, 56-60.
https://doi.org/10.1016/j.physc.2016.02.022
[17]  Zhang, C., Wang, Y., Wang, D., Zhang, Y., Liu, Z.H., Feng, Q.R. and Gan, Z.Z. (2013) Suppression of Superconductivity in Epitaxial MgB2 Ultrathin Films. Journal of Applied Physics, 114, Article ID: 023903.
https://doi.org/10.1063/1.4812738
[18]  Pan, J.Y., Zhang, C., He, F. and Feng, Q.R. (2013) Properties of MgB2 Ultra-Thin Films Fabricated on MgO(111) Substrate by Hybrid Physical-Chemical Vapor Deposition. Acta Physica Sinica, 62, Article ID: 127401.
https://doi.org/10.7498/aps.62.127401
[19]  Fisher, M.P.A., Grinstein, G. and Girvin, S.M. (1990) Presence of Quantum Diffusion in Two Dimensions: Universal Resistance at the Superconductor-Insulator Transition. Physical Review Letters, 64, 587-590.
https://doi.org/10.1103/PhysRevLett.64.587
[20]  Finkel’stein, A.M. (1994) Suppression of Superconductivity in Homogeneously Disordered Systems. Physica B, 197, 636-648.
https://doi.org/10.1016/0921-4526(94)90267-4
[21]  Zhitomirsky, M.E. and Dao, V.H. (2004) Ginzburg-Landau Theory of Vortices in a Multigap Superconductor. Physical Review B, 69, Article ID: 054508.
https://doi.org/10.1103/PhysRevB.69.054508
[22]  de Gennes, P.G. (1966) Superconductivity of Metals and Alloys. Westview Press, New York.
[23]  Ketterson, J.B. and Song, S.N. (1999) Superconductivity. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781139171090
[24]  Bud’ko, S.L., Lapertot, G., Petrovic, C., Cunningham, C.E., Anderson, N. and Canfield, P.C. (2001) Boron Isotope Effect in Superconducting MgB2. Physical Review Letters, 86, 1877-1880.
https://doi.org/10.1103/PhysRevLett.86.1877

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133