|
具有避难所的不连续食饵–捕食者模型的动力学研究
|
Abstract:
本文研究了一类基于避难所控制策略的不连续食饵–捕食者模型的全局动力学。利用Filippov理论和非光滑分析方法得到了实平衡点和伪平衡点的存在性,并证明了这些平衡点的全局渐近稳定性。借助数值模拟,分析了所得结果的生物学意义。
In this paper, the global dynamics of a discontinuous predator-prey model based on shelter control strategy is studied. By using Filippov theory and non-smooth analysis method, the existence of real equilibrium and pseudo equilibrium is obtained, and the global asymptotic stability of these equi-libria is proved. With the help of numerical simulation, the biological significance of the obtained results is analyzed.
[1] | Gause, G.F. (1935) The Struggle for Existence. Ecology, 7, 609. |
[2] | Gause, G.F., Smaragdova, N.P. and Witt, A.A. (1936) Further Studies of Interaction between Predators and Prey. Journal of Animal Ecology, 5, 1-18. https://doi.org/10.2307/1087 |
[3] | Tang, S. and Liang, J. (2013) Global Qualitative Analysis of a Non-Smooth Gause Predator-Prey Model with a Refuge. Nonlinear Analysis: Theory, Methods & Applications, 76, 165-180. https://doi.org/10.1016/j.na.2012.08.013 |
[4] | 黄立宏, 郭振远, 王佳伏. 右端不连续微分方程理论与应用[M]. 北京: 科学出版社, 2011. |
[5] | Yang, J., Tang, S. and Cheke, R.A. (2013) Global Stability and Sliding Bifurcations of a Non-Smooth Gause Predator-Prey System. Applied Mathematics and Computation, 224, 9-20. https://doi.org/10.1016/j.amc.2013.08.024 |
[6] | Li, W., Huang, L. and Wang, J. (2021) Global Asymptotical Stability and Sliding Bifurcation Analysis of a General Filippov-Type Predator-Prey Model with a Refuge. Applied Mathematics and Computation, 405, Article ID: 126263.
https://doi.org/10.1016/j.amc.2021.126263 |
[7] | 杨淼, 黄立宏, 王佳伏, 等. 带有食饵避难的Filippov型捕食-食饵模型的全局动力学[J]. 南通大学学报: 自然科学版, 2020, 19(1): 6. |
[8] | Dawes, J.H.P. and Souza, M.O. (2013) A Derivation of Holling’s Type I, II and III Functional Responses in Predator-Prey Systems. Journal of Theoretical Biology, 327, 11-22. https://doi.org/10.1016/j.jtbi.2013.02.017 |
[9] | Huang, L., Ma, H., Wang, J., et al. (2020) Global Dynamics of a Filippov Plant Disease Model with an Economic Threshold of Infected-Susceptible Ratio. Journal of Applied Analysis and Computation, 10, 2263-2277.
https://doi.org/10.11948/20190409 |