|
用于生物医学的碳量子点的表面改性研究进展
|
Abstract:
由于具有良好的发光性能、较低的毒性、灵活的可修饰性等特点,碳量子点(CDs或CQDs)在生物诊疗方面具有巨大的潜力。碳量子点的发光性能及生物功能直接与其表面基团及杂化物的类型相关。研究者们发展了多种物理、化学、杂化等方法对碳量子点的表面进行精准修饰,以期达到更好的选择性、更高的靶向性、更全的功能性及更佳的诊疗效果。本文对近些年来碳量子点表面常用修饰方法进行了综述,并介绍了其在生物传感及疾病诊疗中的应用。
Due to their good luminescence properties, low toxicity, and flexible modifiability, carbon quantum dots (CDs or CQDs) have great potential in biotherapeutics. The luminescence properties and biological functions of CQDs are directly related to the types of surface groups and hybrids. Researchers have developed a variety of physical, chemical, hybrid and other methods to precisely modify the surface of carbon quantum dots, in order to achieve better selectivity, higher targeting, more complete functionality and better diagnosis and treatment effect. In this paper, the commonly used surface modification methods of CQDs in recent years are reviewed, and their applications in biosensing and disease diagnosis and treatment are introduced.
[1] | Zhao, A.D., Chen, Z.W., Zhao, C.Q., Gao, N., Ren, J.S. and Qu, X.G. (2015) Recent Advances in Bioapplications of C-Dots. Carbon, 85, 309-327. https://doi.org/10.1016/j.carbon.2014.12.045 |
[2] | Jiang, B.P., Zhou, B., Lin, Z.X., Liang, H. and Shen, X.C. (2019) Recent Advances in Carbon Nanomaterials for Cancer Phototherapy. Chemistry: A European Journal, 25, 3993-4004. https://doi.org/10.1002/chem.201804383 |
[3] | Sun, H.J., Wu, L., Wei, W.L. and Qu, X.G. (2013) Recent Advances in Graphene Quantum Dots for Sensing. Materials Today, 16, 433-442. https://doi.org/10.1016/j.mattod.2013.10.020 |
[4] | Alaghmandfard, A., Sedighi, O., Rezaei, N.T., Abedini, A.A., Khachatourian, A.M., Toprak, M.S. and Seifalian, A. (2021) Recent Advances in the Modification of Carbon-Based Quantum Dots for Biomedical Applications. Materials Science and Engineering: C, 120, Article ID: 111756. https://doi.org/10.1016/j.msec.2020.111756 |
[5] | Pan, L., Sun, S., Zhang, L., Jiang, K. and Lin, H. (2016) Near-Infrared Emissive Carbon Dots for Two-Photon Fluorescence Bioimaging. Nanoscale, 8, 17350-17356. https://doi.org/10.1039/C6NR05878G |
[6] | Song, W., Duan, W., Liu, Y., Ye, Z., Chen, Y., Chen, H., Qi, S., Wu, J., Liu, D. and Xiao, L. (2017) Ratiometric Detection of Intracellular Lysine and pH with One-Pot Synthesized Dual Emissive Carbon Dots. Analytical Chemistry, 89, 13626-13633. https://doi.org/10.1021/acs.analchem.7b04211 |
[7] | Wang, J., Cheng, C., Huang, Y., Zheng, B., Yuan, H., Bo, L., Zheng, M.-W., Yang, S.-Y., Guo, Y. and Xiao, D. (2014) A Facile Large-Scale Microwave Synthesis of Highly Fluorescent Carbon Dots from Benzenediol Isomers. Journal of Materials Chemistry C, 2, 5028-5035. https://doi.org/10.1039/C3TC32131B |
[8] | Liu, H., Zhang, Y. and Huang, C. (2019) Development of Nitrogen and Sulfur-Doped Carbon Dots for Cellular Imaging. Journal of Pharmaceutical Analysis, 9, 127-132. https://doi.org/10.1016/j.jpha.2018.10.001 |
[9] | Lu, F., Yang, S., Song, Y., Zhai, C., Wang, Q., Ding, G. and Kang, Z. (2019) Hydroxyl Functionalized Carbon Dots with Strong Radical Scavenging Ability Promote Cell Proliferation. Materials Research Express, 6, Article ID: 065030. https://doi.org/10.1088/2053-1591/ab0c55 |
[10] | Zhang, X.-D., Li, J., Niu, J.-N., Bao, X.-P., Zhao, H.-D. and Tan, M. (2019) Fluorescent Carbon Dots Derived from Urine and Their Application for Bio-Imaging. Methods, 168, 84-93. https://doi.org/10.1016/j.ymeth.2019.04.005 |
[11] | Wang, Y., Man, Y., Li, S., Wu, S., Zhao, X., Xie, F., Qu, Q. and Zou, W.-S. (2020) Pesticide-Derived Bright Chlorine-Doped Carbon Dots for Selective Determination and Intracellular Imaging of Fe(III). Spectrochimica Acta Part A, 226, Article ID: 117594. https://doi.org/10.1016/j.saa.2019.117594 |
[12] | Chen, W., Li, D., Tian, L., Xiang, W., Wang, T., Hu, W., Hu, Y., Chen, S., Chen, J. and Dai, Z. (2018) Synthesis of Graphene Quantum Dots from Natural Polymer Starch for Cell Imaging. Green Chemistry, 20, 4438-4442.
https://doi.org/10.1039/C8GC02106F |
[13] | Wang, L., Yin, Y., Jain, A. and Zhou, H.S. (2014) Aqueous Phase Synthesis of Highly Luminescent, Nitrogen-Doped Carbon Dots and Their Application as Bioimaging Agents. Langmuir, 30, 14270-14275.
https://doi.org/10.1021/la5031813 |
[14] | Jiang, K., Sun, S., Zhang, L., Wang, Y.H., Cai, C.Z. and Lin, H.W. (2015) Bright-Yellow-Emissive N-Doped Carbon Dots: Preparation, Cellular Imaging, and Bifunctional Sensing. ACS Applied Materials & Interfaces, 7, 23231-23238.
https://doi.org/10.1021/acsami.5b07255 |
[15] | Malina, T., Polakova, K., Skopalik, J., Milotova, V., Hola, K., Havrdova, M., Tomankova, K.B., Cmiel, V., Sefc, L. and Zboril, R. (2019) Carbon Dots for in Vivo Fluorescence Imaging of Adipose Tissue-Derived Mesenchymal Stromal Cells. Carbon, 152, 434-443. https://doi.org/10.1016/j.carbon.2019.05.061 |
[16] | Li, C.L., Ou, C.M., Huang, C.C., Wu, W.C., Chen, Y.P., Lin, T.E., Ho, L.C., Wang, C.W., Shih, C.C., Zhou, H.C., Lee, Y.C., Tzeng, W.F., Chiou, T.J., Chu, S.T., Cang, J. and Chang, H.T. (2014) Carbon Dots Prepared from Ginger Exhibiting Efficient Inhibition of Human Hepatocellular Carcinoma Cells. Journal of Materials Chemistry B, 2, 4564-4571. https://doi.org/10.1039/c4tb00216d |
[17] | Hua, X.W., Bao, Y.W., Chen, Z. and Wu, F.G. (2017) Carbon Quantum Dots with Intrinsic Mitochondrial Targeting Ability for Mitochondria-Based Theranostics. Nanoscale, 9, 10948-10960. https://doi.org/10.1039/C7NR03658B |
[18] | Ge, J.C., Jia, Q.Y., Liu, W.M., Lan, M.H., Zhou, B.J., Guo, L., Zhou, H.Y., Zhang, H.Y., Wang, Y., Gu, Y., Meng, X.M. and Wang, P.F. (2016) Carbon Dots with Intrinsic Theranostic Properties for Bioimaging, Red-Light-Triggered Photodynamic/Photothermal Simultaneous Therapy in Vitro and in Vivo. Advanced Healthcare Materials, 5, 665-675.
https://doi.org/10.1002/adhm.201500720 |
[19] | Sun, J., Wang, Q., Yang, J., Zhang, J., Li, Z., Li, H. and Yang, X.-F. (2019) 2,4-Dinitrobenzenesulfonate Functionalized Carbon Dots as a Turn-On Fluorescent Probe for Imaging of Biothiols in Living Cells. Microchimica Acta, 186, Article No. 402. https://doi.org/10.1007/s00604-019-3503-9 |
[20] | Wang, Q., Zhang, S., Zhong, Y., Yang, X.-F., Li, Z. and Li, H. (2017) Preparation of Yellow-Green-Emissive Carbon Dots and Their Application in Constructing a Fluorescent Turn-On Nanoprobe for Imaging of Selenol in Living Cells. Analytical Chemistry, 89, 1734-1741. https://doi.org/10.1021/acs.analchem.6b03983 |
[21] | Zhou, D., Huang, H., Wang, Y., Wang, Y., Hu, Z. and Li, X. (2019) A Yellow-Emissive Carbon Nanodot-Based Ratiometric Fluorescent Nanosensor for Visualization of Exogenous and Endogenous Hydroxyl Radicals in the Mitochondria of Live Cells. Journal of Materials Chemistry B, 7, 3737-3744. https://doi.org/10.1039/C9TB00289H |
[22] | Hamd-Ghadareh, S., Salimi, A., Fathi, F. and Bahrami, S. (2017) An Amplified Comparative Fluorescence Resonance Energy Transfer Immunosensing of CA125 Tumor Marker and Ovarian Cancer Cells Using Green and Economic Carbon Dots for Bio-Applications in Labeling, Imaging and Sensing. Biosensors and Bioelectronics, 96, 308-316.
https://doi.org/10.1016/j.bios.2017.05.003 |
[23] | Zhang, J., Jia, H., Liu, W., Wang, J. and Fang, D. (2021) A Novel Dual-Excitation and Dual-Emission Fluorescent Probe (CQDs-O-NBD) Based on Carbon Quantum Dots for Detection and Discrimination of Cys/Hcy and GSH/H2S in Living Cells. Dyes and Pigments, 193, Article ID: 109554. https://doi.org/10.1016/j.dyepig.2021.109554 |
[24] | An, J., Chen, M., Hu, N., Hu, Y., Chen, R., Lyu, Y., Guo, W., Li, L. and Liu, Y. (2020) Carbon Dots-Based Dual-Emission Ratiometric Fluorescence Sensor for Dopamine Detection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 243, Article ID: 118804. https://doi.org/10.1016/j.saa.2020.118804 |
[25] | Liu, Q., Dong, Z., Hao, A., Guo, X. and Dong, W. (2021) Synthesis of Highly Fluorescent Carbon Dots as a Dual-Excitation Rationmetric Fluorescent Probe for the Fast Detection of Chlorogenic Acid. Talanta, 221, Article ID: 121372.
https://doi.org/10.1016/j.talanta.2020.121372 |
[26] | Sidhu, J.S., Singh, A., Garg, N. and Singh, N. (2017) Carbon Dot Based, Naphthalimide Coupled FRET Pair for Highly Selective Ratiometric Detection of Thioredoxin Reductase and Cancer Screening. ACS Applied Materials & Interfaces, 9, 25847-25856. https://doi.org/10.1021/acsami.7b07046 |
[27] | Gao, M.X., Yang, L., Zheng, Y., Yang, X.X., Zou, H.Y., Han, J., Liu, Z.X., Li, Y.F. and Huang, C.Z. (2017) “Click” on Alkynylated Carbon Quantum Dots: An Efficient Surface Functionalization for Specific Biosensing and Bioimaging. Chemistry: A European Journal, 23, 2171-2178. https://doi.org/10.1002/chem.201604963 |
[28] | Priyadarshini, E., Rawat, K., Prasad, T. and Bohidar, H.B. (2018) Antifungal Efficacy of Au@ Carbon Dots Nanoconjugates against Opportunistic Fungal Pathogen, Candida albicans. Colloids and Surfaces B: Biointerfaces, 163, 355-361.
https://doi.org/10.1016/j.colsurfb.2018.01.006 |
[29] | Rezaei, B., Hassani, Z., Shahshahanipour, M., Ensafi, A.A. and Mohammadnezhad, G. (2018) Application of Modified Mesoporous Boehmite (Gamma-AlOOH) with Green Synthesis Carbon Quantum Dots for a Fabrication Biosensor to Determine Trace Amounts of Doxorubicin. Luminescence, 33, 1377-1386. https://doi.org/10.1002/bio.3558 |
[30] | Gao, D.G., Zhao, P., Lyu, B., Li, Y.J., Hou, Y.L. and Ma, J.Z. (2020) Carbon Quantum Dots Decorated on ZnO Nanoparticles: An Efficient Visible-Light Responsive Antibacterial Agents. Applied Organometallic Chemistry, 34, e5665.
https://doi.org/10.1002/aoc.5665 |
[31] | Zheng, D.W., Li, B., Li, C.X., Fan, J.X., Lei, Q., Li, C., Xu, Z.S. and Zhang, X.Z. (2016) Carbon-Dot-Decorated Carbon Nitride Nanoparticles for Enhanced Photodynamic Therapy against Hypoxic Tumor via Water Splitting. ACS Nano, 10, 8715-8722. https://doi.org/10.1021/acsnano.6b04156 |
[32] | Jiang, D.N., Ni, D.N., Liu, F., Zhang, L.Q., Liu, L.L. and Pu, X.Y. (2016) A Fluorescent Imaging Assay of Cast in Renal Disease Based on Graphene Quantum Dots and Fe3O4 Nanoparticles. Clinica Chimica Acta, 454, 94-101.
https://doi.org/10.1016/j.cca.2016.01.001 |
[33] | Yan, X., Song, Y., Zhu, C.Z., Song, J.H., Du, D., Su, X.G. and Lin, Y.H. (2016) Graphene Quantum Dot-MnO2 Nanosheet Based Optical Sensing Platform: A Sensitive Fluorescence “Turn Off-On” Nanosensor for Glutathione Detection and Intracellular Imaging. ACS Applied Materials & Interfaces, 8, 21990-21996.
https://doi.org/10.1021/acsami.6b05465 |
[34] | Cai, Q.Y., Li, J., Ge, J., Zhang, L., Hu, Y.L., Li, Z.H. and Qu, L.B. (2015) A Rapid Fluorescence “Switch-On” Assay for Glutathione Detection by Using Carbon Dots-MnO2 Nanocomposites. Biosensors and Bioelectronics, 72, 31-36.
https://doi.org/10.1016/j.bios.2015.04.077 |
[35] | Li, L.B., Wang, C., Liu, K.Y., Wang, Y.H., Liu, K. and Lin, Y.Q. (2015) Hexagonal Cobalt Oxyhydroxide-Carbon Dots Hybridized Surface: High Sensitive Fluorescence Turn-On Probe for Monitoring of Ascorbic Acid in Rat Brain Following Brain Ischemia. Analytical Chemistry, 87, 3404-3411. https://doi.org/10.1021/ac5046609 |
[36] | Zhang, L.M., Qin, J., Yang, Q., Wei, S.Q. and Yang, R. (2019) Redox Modulated Fluorometric Sensing of Ascorbic Acid by Using a Hybrid Material Composed of Carbon Dots and CoOOH Nanosheets. Microchimica Acta, 186, Article No. 368. https://doi.org/10.1007/s00604-019-3483-9 |
[37] | Bao, Y.W., Hua, X.W., Li, Y.H., Jia, H.R. and Wu, F.G. (2018) Hyperthemia-Promoted Cytosolic and Nuclear Delivery of Copper/Carbon Quantum Dot-Crosslinked Nanosheets: Multimodal Imaging-Guided Photothermal Cancer Therapy. ACS Applied Materials & Interfaces, 10, 1544-1555. https://doi.org/10.1021/acsami.7b15332 |
[38] | Zhuo, S.J., Gao, L.L., Zhang, P., Du, J.Y. and Zhu, C.Q. (2018) Living Cell Imaging and Sensing of Hydrogen Sulfide Using High-Efficiency Fluorescent Cu-Doped Carbon Quantum Dots. New Journal of Chemistry, 42, 19659-19664.
https://doi.org/10.1039/C8NJ03654C |
[39] | Zhang, D.D., Wen, L.W., Huang, R., Wang, H.H., Hu, X.L. and Xing, D. (2018) Mitochondrial Specific Photodynamic Therapy by Rare-Earth Nanoparticles Mediated Near-Infrared Graphene Quantum Dots. Biomaterials, 153, 14-26.
https://doi.org/10.1016/j.biomaterials.2017.10.034 |
[40] | Wang, F.H., Bae, K., Huang, Z.W. and Xue, J.M. (2018) Two-Photon Graphene Quantum Dot Modified Gd2O3 Nanocomposites as a Dual-Mode MRI Contrast Agent and Cell Labelling Agent. Nanoscale, 10, 5642-5649.
https://doi.org/10.1039/C7NR08068A |
[41] | Han, C.P., Xu, H.T., Wang, R., Wang, K.Y., Dai, Y., Liu, Q., Guo, M.X., Li, J.J. and Xu, K. (2016) Synthesis of a Multifunctional Manganese(II)-Carbon Dots Hybrid and Its Application as an Efficient Magnetic-Fluorescent Imaging Probe for Ovarian Cancer Cell Imaging. Journal of Materials Chemistry B, 4, 5798-5802.
https://doi.org/10.1039/C6TB01250G |
[42] | Motaghi, H., Mehrgardi, M.A. and Bouvet, P. (2017) Carbon Dots-AS1411 Aptamer Nanoconjugate for Ultrasensitive Spectrofluorometric Detection of Cancer Cells. Scientific Reports, 7, Article No. 10513.
https://doi.org/10.1038/s41598-017-11087-2 |
[43] | Liu, Q.L., Xu, S.H., Niu, C.X., Li, M.F., He, D.C., Lu, Z.L., Ma, L., Na, N., Huang, F., Jiang, H. and Ouyang, J. (2015) Distinguish Cancer Cells Based on Targeting Turn-On Fluorescence Imaging by Folate Functionalized Green Emitting Carbon Dots. Biosensors and Bioelectronics, 64, 119-125. https://doi.org/10.1016/j.bios.2014.08.052 |
[44] | Dong, J., Wang, K.Q., Sun, L.P., Sun, B.L., Yang, M.F., Chen, H.Y., Wang, Y., Sun, J.Y. and Dong, L.F. (2018) Application of Graphene Quantum Dots for Simultaneous Fluorescence Imaging and Tumor-Targeted Drug Delivery. Sensors and Actuators B: Chemical, 256, 616-623. https://doi.org/10.1016/j.snb.2017.09.200 |
[45] | Kuo, W.S., Shao, Y.T., Huang, K.S., Chou, T.M. and Yang, C.H. (2018) Antimicrobial Amino-Functionalized Nitrogen-Doped Graphene Quantum Dots for Eliminating Multidrug-Resistant Species in Dual-Modality Photodynamic Therapy and Bioimaging under Two-Photon Excitation. ACS Applied Materials & Interfaces, 10, 14438-14446.
https://doi.org/10.1021/acsami.8b01429 |
[46] | Liu, R.J., Zhang, L.L., Zhao, J.J., Luo, Z.H., Huang, Y. and Zhao, S.L. (2018) Aptamer and IR820 Dual-Functionalized Carbon Dots for Targeted Cancer Therapy against Hypoxic Tumors Based on an 808 nm Laser-Triggered Three-Pathway Strategy. Advances in Therapy, 1, Article ID: 1800041. https://doi.org/10.1002/adtp.201800041 |
[47] | Jaleel, J.A., Ashraf, S.M., Rathinasamy, K. and Pramod, K. (2019) Carbon Dot Festooned and Surface Passivated Graphene-Reinforced Chitosan Construct for Tumor-Targeted Delivery of TNF-Alpha Gene. International Journal of Biological Macromolecules, 127, 628-636. https://doi.org/10.1016/j.ijbiomac.2019.01.174 |
[48] | Zeng, Q.H., Shao, D., He, X., Ren, Z.Y., Ji, W.Y., Shan, C.X., Qu, S.N., Li, J., Chen, L. and Li, Q. (2016) Carbon Dots as a Trackable Drug Delivery Carrier for Localized Cancer Therapy in Vivo. Journal of Materials Chemistry B, 4, 5119-5126. https://doi.org/10.1039/C6TB01259K |
[49] | Peng, X., Wang, R., Wang, T.J., Yang, W.N., Wang, H., Gu, W. and Ye, L. (2018) Carbon Dots/Prussian Blue Satellite/Core Nanocomposites for Optical Imaging and Photothermal Therapy. ACS Applied Materials & Interfaces, 10, 1084-1092. https://doi.org/10.1021/acsami.7b14972 |
[50] | Wang, L.Q., Wang, X.Y., Bhirde, A., Cao, J.B., Zeng, Y., Huang, X.L., Sun, Y.P., Liu, G. and Chen, X.Y. (2014) Carbon-Dot-Based Two-Photon Visible Nanocarriers for Safe and Highly Efficient Delivery of siRNA and DNA. Advanced Healthcare Materials, 3, 1203-1209. https://doi.org/10.1002/adhm.201300611 |
[51] | Zhou, J., Deng, W.W., Wang, Y., Cao, X., Chen, J.J., Wang, Q., Xu, W.Q., Du, P., Yu, Q.T., Chen, J.X., Spector, M., Yu, J.N. and Xu, X.M. (2016) Cationic Carbon Quantum Dots Derived from Alginate for Gene Delivery: One-Step Synthesis and Cellular Uptake. Acta Biomaterialia, 42, 209-219. https://doi.org/10.1016/j.actbio.2016.06.021 |
[52] | Khan, M.S., Pandey, S., Abou, T., Bhaisare, M.L. and Wu, H.F. (2015) Controlled Delivery of Dopamine Hydrochloride Using Surface Modified Carbon Dots for Neuro Diseases. Colloids and Surfaces B: Biointerfaces, 134, 140-146.
https://doi.org/10.1016/j.colsurfb.2015.06.006 |
[53] | Ghosh, S., Ghosal, K., Mohammad, S.A. and Sarkar, K. (2019) Dendrimer Functionalized Carbon Quantum Dot for Selective Detection of Breast Cancer and Gene Therapy. Chemical Engineering Journal, 373, 468-484.
https://doi.org/10.1016/j.cej.2019.05.023 |
[54] | Wang, H., Mukherjee, S., Ji, J.H., Banerjee, P., Chen, Q.W. and Zhou, S.Q. (2017) Biocompatible Chitosan-Carbon Dot Hybrid Nanogels for NIR-Imaging-Guided Synergistic Photothermal-Chemo Therapy. ACS Applied Materials & Interfaces, 9, 18639-18649. https://doi.org/10.1021/acsami.7b06062 |