|
青冈县1978年以来气候变化对主要农作物产量影响的研究
|
Abstract:
研究选取青冈县1978~2019年的气温、降水、农作物种植面积及产量数据,利用气候倾向速率及M-K突变性检验等方法对气候数据处理分析,通过5a滑动平均的方法分解获取气候产量,并建立气候影响度模型定量计算青冈县主要农作物产量受气候变化影响情况,进而探讨青冈县农业生产力影响因素,在此基础上提出相关政策建议措施。研究得出如下结论:1) 青冈县1978年以来年际平均气温呈现明显升高趋势,且气温升高主要为最低气温上升引起,也就是由冬季变暖引起,年际平均气温M-K检验突变点为1990年。青冈县近40年降水量波动较大,降水量整体为上升趋势,突变点发生在1995年。2) 模型实证结果显示,玉米与大豆变化一致,在气温突变前后一直为正影响,且突变后气温影响度加大;玉米在降水量突变前后趋势一致,为负影响,但影响度变小;大豆在降雨量突变前后由正影响变为负影响。3) 针对青冈县农业气候及农业生产力研究,提出以下农业发展对策建议,调整种植结构,推进生物技术引进,加强生产管理,落实农村生态保护政策。
The research selects the temperature, precipitation, crop planting area and yield data of Qinggang county from 1978 to 2019, processes and analyzes the climate data by using the methods of climate tendency rate and M-K mutation test, decomposes and obtains the climate yield by the method of 5a moving average, establishes the climate impact degree model, quantitatively calculates the impact of climate change on the yield of main crops in Qinggang County, and then discusses the influencing factors of agricultural productivity in Qinggang county, On this basis, relevant policy suggestions and measures are put forward. The conclusions are as follows: 1) the interannual average temperature in Qinggang county has shown an obvious upward trend since 1978, and the temperature rise is mainly caused by the rise of minimum temperature, that is, caused by winter warming. The M-K test mutation point of interannual average temperature is 1990. The precipitation in Qinggang County fluctuated greatly in recent 40 years, and the precipitation showed an upward trend as a whole. The mutation point occurred in 1995. 2) The empirical results of the model show that the changes of corn and soybean are consistent, and the influence of temperature is always positive before and after the sudden change of temperature, and the influence degree of temperature increases after the sudden change of temperature; the trend of maize is the same before and after the sudden change of precipitation, which is negative, but the degree of influence becomes smaller; soybean changed from positive effect to negative effect before and after rainfall mutation. 3) According to the research on agricultural climate and agricultural productivity in Qinggang County, the following countermeasures and suggestions for agricultural development are put forward, the planting structure is adjusted, the introduction of biotechnology is promoted, production management is strengthened, and rural ecological protection policies are implemented.
[1] | Christian, B., Benjamin, S., Maud, B., Benoit, S., Seydou, T., Thierry, L., et al. (2005) From GCM Grid Cell to Argicltural Plot Scale Issues Affecting Modeling of Climate Impact. Philosophical Transactions of the Royal Society B, 360, 2095-2108. https://doi.org/10.1098/rstb.2005.1741 |
[2] | Stockle, C., Dyke, P.T., Williams, J.R., Allan Jones, C. and Rosenberg, N.J. (1992) A Method for Estimating the Direct and Climatic Effects of Rising Atmospheric Carbon Dioxide on Growth and Yield of Crops (Part II): Sensitivity Analysis at Three Sites in the Mid Western USA. Agricultural Systems, 38, 239-256.
https://doi.org/10.1016/0308-521X(92)90068-Y |
[3] | Black, D.E. (2002) The Rains May Be A-Comin’. Science, 297, 528-529. https://doi.org/10.1126/science.1074379 |
[4] | Jones, P.D., Raper, S.C.B. and Wigley, T.M.L. (1986) Southern Hemisphere Surface Air Temperature Variations: 1851-1984. Journal of Climate and Applied Meteorology, 25, 1213-1230.
https://doi.org/10.1175/1520-0450(1986)025%3C1213:SHSATV%3E2.0.CO;2 |
[5] | Carbone, G.J., Kiechle, W., Locke, C., Mearns, L.O., McDaniel, L. and Downton, M.W. (2003) Response of Soybean and Sorghum to Varying Spatial Scales of Climate Change Scenarios in the Southeastern United States. Climatic Change, 60, 72-98. https://doi.org/10.1023/A:1026041330889 |
[6] | Easterling, W.E., Rosenberg, N.J., Mckenney, M.S., Allan Jones, C., Dyke, P.T. and Williams, J.R. (1992) Preparing the Erosion Productivity Impact Calculator (EPIC) Model to Simulate Crop Response to Climate Change and the Direct Effects of CO2. Agricultural and Forest Meteorology, 59, 17-34. https://doi.org/10.1016/0168-1923(92)90084-H |
[7] | Mera, R.J., Niyogi, D., Buol, G.S., Wilkerson, G.G. and Semazzi, F.H.M. (2006) Potential Individual versus Simultaneous Climate Change Effects on Soybean (C3) and Maize (C4) Crops: An Agroteclmology Model Based Study. Global and Planetary Change, 54, 163-182. https://doi.org/10.1016/j.gloplacha.2005.11.003 |
[8] | Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., Liu, H., Ma, Y., Ding, Y., Friedlingstein, P., Liu, C., Tan, K., Yu, Y., Zhang, T. and Fang, J. (2010) The Impacts of Climate Change on Water Resources and Agriculture in China. Nature, 467, 43-51. https://doi.org/10.1038/nature09364 |
[9] | Ahaed, S.A., Diffenbaugh, N.S., Hertel, T.W., Lobell, D.B., Ramankutty, N., Rios, A.R. and Rowhani, P. (2010) Climate Volatility and Poverty Vulnerability in Tanzania. Policy Research Working Papers, World Bank, Washington DC.
https://doi.org/10.1596/1813-9450-5117 |
[10] | 王馥棠. CO2浓度增加对植物生长和农业生产的影响[J]. 气象, 1993(7): 8-13. |
[11] | 张建平, 赵艳霞, 王春乙, 杨晓光, 何勇. 气候变化情景下东北地区玉米产量变化模拟[J]. 中国生态农业学报, 2008, 16(6): 1448-1452. |
[12] | 郭建平. 气候变化对中国农业生产的影响研究进展[J]. 应用气象学报, 2015, 26(1): 1-11. |
[13] | 史晓磊. 基于引力模型的青冈县农村居民点空间布局优化[D]: [硕士学位论文]. 哈尔滨: 东北农业大学, 2019. |
[14] | 罗岚. 基于现代化生态农业发展的青冈县城镇规划研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2017. |
[15] | 梁颖. 蛟河市近30年来气候变化及其对主要农作物的影响研究[D]: [硕士学位论文]. 兰州: 兰州大学, 2016. |
[16] | 唐佳. 气候变化对蒲江县主要农作物产量的影响及灾损评估[D]: [硕士学位论文]. 成都: 四川师范大学, 2019. |
[17] | 张亚宁, 张明军, 王圣杰, 杜铭霞, 周苏娥. 气候变化对河西走廊主要农作物的影响[J]. 生态环境学报, 2017, 26(8): 1325-1335. |
[18] | 黄晓旭. 气候变化对盐亭县主要农作物产量的影响度及灾损风险评估[D]: [硕士学位论文]. 成都: 四川师范大学, 2016. |
[19] | 孙书安, 郑国清, 刘九芬, 孟菊茹. 气象因子影响度的概念及其应用[J]. 河南农业科学, 1993(3): 11-12. |
[20] | 李永生, 张健, 于梅, 班晋. 2013年黑龙江省夏季洪涝灾害成因分析[J]. 气象与环境学报, 2014, 30(3): 31-37. |