|
离子液体浸渍ZIF-67捕获CO2的实验研究
|
Abstract:
全球温室效应的加剧以及碳达峰碳中和的提出,进一步把二氧化碳(CO2)的捕集与封存推到了高潮。碳达峰、碳中和的提出把低碳减排进一步成为焦点。液体吸收剂的挥发性高,还容易腐蚀设备,这为吸附剂的发展创造了条件。为研究性能优良吸附剂,合成了新型的高CO2选择性吸附剂ZIF-N-0.75使得二氧化碳的吸附选择性高达16.0568。通过溶剂热的方法合成了ZIF-67以及ZIF-N-0.75,同时实现了对吸附剂孔结构的调控。离子液体为新型的二氧化碳吸收剂,其具有低挥发性、低腐蚀性等优点。且离子液体的吸收容量很大。本文将吸收剂与吸附剂结合合成新型吸附剂,来优化吸附剂性能。本研究合成了离子液体(四甲基铵甘氨酸盐([N1111][Gly])、1-丁基-3-甲基咪唑L赖氨酸盐([Bmim][Lys]))浸渍ZIF-67的新型CO2吸附剂(ZIF-N, ZIF-B)。实验结果表明浸渍之后的新型吸附剂提高了CO2的吸附选择性,从选择性10.294提升到23.087。这对于二氧化碳的捕集提供了好的思路。
The intensification of global greenhouse effect and the proposal of carbon peak carbon neutralization further push the capture and storage of carbon dioxide (CO2) to a climax. The proposal of carbon peak and carbon neutralization further becomes the focus of low-carbon emission reduction. Liquid absorbents are highly volatile and prone to corrosion of equipment, which creates conditions for the development of adsorbents. In order to study the adsorbent with excellent performance, a novel high CO2 selective adsorbent ZIF-N-0.75 was synthesized, which made the adsorption selectivity of carbon dioxide up to 16.0568. ZIF-67 and ZIF-N-0.75 were synthesized by solvothermal method, and the pore structure of adsorbent was regulated. Ionic liquid is a new type of carbon dioxide absorbent, which has the advantages of low volatility and low corrosion. And ionic liquid absorption capacity is very large. In this paper, a new type of adsorbent is synthesized by combining absorbent and adsorbent to optimize the performance of adsorbent. In this study, ZIF-N and ZIF-B were synthesized by impregnating ZIF-67 with ionic liquid (tetramylammonium glycine ([N1111][Gly]) and 1-butyl-3-methylimidazolium L lysine ([Bmim][Lys]). The experimental results show that the new adsorbent after impregnation improves the adsorption selectivity of CO2 from 10.294 to 23.087. This provides a good idea for CO2 capture.
[1] | 邬高翔, 田瑞. 二氧化碳捕集技术研究进展[J]. 云南化工, 2020, 47(4): 22-23. |
[2] | 谢辉. 二氧化碳捕集技术应用现状及研究进展[J]. 化肥设计, 2021, 59(6): 1-9. |
[3] | 颜星, 刘永生, 杨杰. 金属有机骨架化合物在CO2捕集中的研究进展[J]. 天然气化工(C1化学与化工), 2016, 41(1): 68-74. |
[4] | 邵雪泉, 赵俊虎. 氮可控多级孔聚合物合成及CO2捕获性能研究[J]. 化工管理, 2018(26): 24-26. |
[5] | Geng, J.C., Xue, D.M., Liu, X.Q., et al. (2017) N-Doped Porous Carbons for CO2 Capture: Rational Choice of N-Containing Polymer with High Phenyl Density as Precursor. AIChE Journal, 63, 1648-1658.
https://doi.org/10.1002/aic.15531 |
[6] | 肖筱瑜, 谷娟平, 梁文寿, 等. 二氧化碳捕集、封存与利用技术应用状况[J]. 广州化工, 2022, 50(3): 26-29. |
[7] | 孙易, 建伟伟, 解伟欣, 等. 金属-有机骨架材料用于CO2吸附的研究进展[J]. 应用化工, 2021, 50(12): 3482-3488. |
[8] | Tan, Y.T., Nookuea, W., Li, H.L., et al. Property Impacts on Carbon Capture and Storage (CCS) Processes: A Review. Energy Conversion and Management, 118, 204-222. |
[9] | Criado, Y.A., Arias, B. and Abanades, J.C. (2017) Calcium Looping CO2 Capture System for Back-Up Power Plants. Energy & Environmental Science, 10, 1994-2004. https://doi.org/10.1039/C7EE01505D |
[10] | Pera-Titus, M. (2014) Porous Inorganic Membranes for CO2 Capture: Present and Prospects. Chemical Reviews, 114, 1413-1492. https://doi.org/10.1021/cr400237k |
[11] | 王兰云, 张亚娟, 徐永亮, 等. 离子液体吸收CO2及其机理研究进展[J]. 安全与环境学报, 2021: 1-20. |
[12] | 俞犇, 陈浩冬, 张佳帅, 等. 金属有机框架材料对CO2分离的研究进展[J]. 山东化工, 2017, 46(24): 61-62. |
[13] | 王艺, 张艺凡, 龙世伟, 等. ZnCo双金属MOF材料的制备及其催化性能探究[J]. 山东化工, 2022, 51(3): 43-45. |
[14] | 周杰, 杨明莉. 电化学方法制备MOF膜的研究进展[J]. 材料导报, 2020, 34(19): 19043-19049. |
[15] | 刘增欣, 王依军, 郝春莲, 等. Zn/Cu单晶转换MOF材料的CO2/CH4分离性能研究[J]. 化工学报, 2021, 72(S1): 546-553. |
[16] | 李新宇, 张硕卿, 丁斌, 等. 不同中心原子的MOF材料在锂(钠)离子电池中的应用[J]. 现代化工, 2019, 39(9): 44-48. |
[17] | Sahin, F., Topuz, B. and Kalipcilar, H. (2018) Synthesis of ZIF-7, ZIF-8, ZIF-67, and ZIF-L from Recycled Mother Liquors. Microporous and Mesoporous Materials, 261, 259-267. https://doi.org/10.1016/j.micromeso.2017.11.020 |
[18] | Wu, X., Liu, W., Wu, H., et al. (2018) Nanopo-rous ZIF-67 Embedded Polymers of Intrinsic Microporosity Membranes with Enhanced Gas Separation Performance. Journal of Membrane Science, 548, 309-318.
https://doi.org/10.1016/j.memsci.2017.11.038 |
[19] | Olavi, H., Eskandari, A., Shojaei, A., et al. (2018) Enhancing CO2/N2 Adsorption Selectivity via Post-Synthetic Modification of NH2-UiO-66(Zr). Microporous and Mesoporous Materials, 257, 193-201.
https://doi.org/10.1016/j.micromeso.2017.08.043 |
[20] | Lv, G., Liu, J., Xiong, Z., et al. (2016) Selectivity Adsorptive Mechanism of Different Nitrophenols on UiO-66 and UiO-66-NH2 in Aqueous Solution. Journal of Chemical & Engineering Data, 61, 3868-3876.
https://doi.org/10.1021/acs.jced.6b00581 |
[21] | Chatti, R., Bansiwal, A.K., Thote, J.A., et al. (2009) Amine Loaded Zeolites for Carbon Dioxide Capture: Amine Loading and Adsorption Studies. Microporous and Mesoporous Materials, 121, 84-89.
https://doi.org/10.1016/j.micromeso.2009.01.007 |
[22] | Shin, S., Yoo, D.K., Bae, Y.S., et al. (2020) Polyvinylamine-Loaded Metal-Organic Framework MIL-101 for Effective and Selective CO2 Adsorption under Atmospheric or Lower Pressure. Chemical Engineering Journal, 389, Article ID: 123429. https://doi.org/10.1016/j.cej.2019.123429 |
[23] | Molavi, H., Joukani, F.A. and Shojaei, A. (2018) Ethylenediamine Grafting to Functionalized NH2-UiO-66 Using Green Aza-Michael Addition Reaction to Improve CO2/CH4 Adsorption Selectivity. Industrial & Engineering Chemistry Research, 57, 7030-7039. https://doi.org/10.1021/acs.iecr.8b00372 |
[24] | Lourenco, M.A.O., Fontana, M., Jagdale, P., et al. (2021) Improved CO2 Adsorption Properties through Amine Functionalization of Multi-Walled Carbon Nanotubes. Chemical Engineering Journal, 414, Article ID: 128763.
https://doi.org/10.1016/j.cej.2021.128763 |