全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

淹水直播稻萌发期生长和贮藏物质分解对外源GAs的响应
Responses of Growth and Storage Material Decomposition to Exogenous GAs in Submerged Direct Seeding Rice during Germination

DOI: 10.12677/BR.2022.113043, PP. 366-375

Keywords: 直播稻,萌发,耐淹,消耗,调控
Direct Seeding Rice
, Germination, Submergence Tolerance, Consumption, Regulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究外源赤霉素(GAs)对水直播模式下稻种淹水萌发能力的调控效应,本试验以淹水敏感型水稻“川优6203”为试验材料,稻种分别于0、10、100、1000 mg/L GAs溶液浸种24 h后,分别进行0、3、7、14 d淹水处理,并以常规湿直播作为对照,分析外源GAs对稻种萌发、株高伸长、植株贮藏物质消耗的影响。结果表明:长期淹水导致稻种淹水发芽率、株高及其日均伸长速率大幅降低,干物质量、可溶性糖、淀粉含量快速消耗。外源GAs处理可有效促进稻种淹水萌发和株高伸长,且100 mg/L GAs处理中淹水发芽率较其他处理提高30%以上,株高和日均伸长速率提高17.0%~30.7%,处理间差异显著(P < 0.05)。此外,经7 d以上淹水处理后,100 mg/L GAs处理植株干物质量、淀粉浓度和非结构碳水化合物(NSC)含量均显著高于其它处理,而其日均干物质消耗速率、可溶性糖含量均显著低于其它处理。由此可见,100 mg/L GAs外源处理稻种可通过抑制稻种过量的淀粉及干物质无氧损耗,有效促进水稻萌发及株高伸长,提升稻种耐淹能力。100 mg/L GAs可作为直播稻促耐淹生长调节剂的主要成分及最适浓度,这可为水直播促耐淹调控技术研发提供理论依据。
In order to study the regulatory effect of exogenous gibberellins (GAs) on the germination ability of rice seeds in submerged direct seeding mode, the submergence-sensitive rice “Chuanyou 6203” was used as the experimental material in this experiment. After soaking the seeds in 100 and 1000 mg/L GAs solution for 24 h, they were submerged for 0, 3, 7, and 14 d respectively, and the conventional wet direct seeding was used as the control to analyze the effect of exogenous GAs on rice seed germination and plant height elongation, the effect of plant storage material consumption. The results showed that the germination rate, plant height and average daily elongation rate of rice seeds were greatly reduced due to long-term submergence, and the dry matter mass, soluble sugar and starch content were rapidly consumed. The exogenous GAs treatment can effectively promote the submerged germination and plant height elongation of rice seeds, and the submerged germination rate of the 100 mg/L GAs treatment increased by more than 30% compared with other treatments, and the plant height and the average daily elongation rate increased by 17.0%~ 30.7%, with significant difference between treatments (P < 0.05). In addition, after more than 7 days of submergence treatment, the dry matter mass, starch concentration and non-structural carbohydrate (NSC) content of plants in the 100 mg/L GAs treatment were significantly higher than those in other treatments, while the average daily dry matter consumption rate, Soluble sugar content was significantly lower than other treatments. It can be seen that exogenous treatment of rice seeds with 100 mg/L GAs can effectively promote rice germination and plant height elongation by inhibiting excessive starch and anaerobic loss of dry matter in rice seeds, and improve the submergence tolerance of rice seeds. 100 mg/L GAs can be used as the main component and optimum concentration of the submergence-tolerance-promoting growth regulator for direct seeding rice, which can provide a theoretical basis for the

References

[1]  赵丽萍, 陶优生, 唐云鹏, 唐启源. 水稻栽培方式的演变历史和发展趋势[J]. 作物研究, 2013, 27(2): 169-173.
[2]  Hussain, S., Ramzan, M., Akhter, M., et al. (2008) Weed Management in Direct Seeded Rice. The Journal of Animal and Plant Sciences, 18, 86-88.
[3]  Iqbal, M.F., Hussain, M. and Rasheed, A. (2017) Direct Seeded Rice: Purely a Site Specific Technology. International Journal of Advanced Research in Biological Sciences, 4, 53-57.
https://doi.org/10.22192/ijarbs.2017.04.07.006
[4]  王洋, 王盈盈, 洪德林. 太湖流域水稻种子活力和耐缺氧能力遗传变异研究[J]. 南京农业大学学报, 2009, 32(3): 1-7.
[5]  Gibbs, J., Morrell, S., Valdez, A., et al. (2000) Regulation of Alcoholic Fermentation in Coleoptiles of Two Rice Cultivars Differing in Tolerance to Anoxia. Journal of Experimental Botany, 51, 785-796.
https://doi.org/10.1093/jexbot/51.345.785
[6]  李晓丹. 籼稻种子萌发期耐淹性资源挖掘及关联分析[D]: [硕士学位论文]. 南京: 南京农业大学, 2016.
[7]  Ismail, A.M., Ella, E.S., Vergara, G.V., et al. (2009) Mechanisms Associated with Tolerance to Flooding during Germination and Early Seedling Growth in Rice (Oryza sativa). Annals of Botany, 103, 197-209.
https://doi.org/10.1093/aob/mcn211
[8]  Magneschi, L., Kudahettige, R.L., Alpi, A., et al. (2009) Comparative Analysis of Anoxic Coleoptile Elongation in Rice Varieties: Relationship between Coleoptile Length and Carbohydrate Levels, Fermentative Metabolism and Anaerobic Gene Expression. Plant Biology, 11, 561-573.
https://doi.org/10.1111/j.1438-8677.2008.00150.x
[9]  Setter, T.L., Ella, E.S. and Valdez, A.P. (1994) Rela-tionship between Coleoptile Elongation and Alcoholic Fermentation in Rice Exposed to Anoxia. II. Cultivar Differences. Annals of Botany, 74, 273-279.
https://doi.org/10.1006/anbo.1994.1118
[10]  江玲, 万建民. 植物激素ABA和GA调控种子休眠和萌发的研究进展[J]. 江苏农业学报, 2007, 23(4): 360-365.
[11]  刘丽雪. 赤霉素信号转导途径研究进展[J]. 农业工程技术, 2021, 41(12): 66-67.
https://doi.org/10.16815/j.cnki.11-5436/s.2021.12.026
[12]  吕育松. 水稻中胚轴伸长基因qME1的克隆与功能分析[D]: [博士学位论文]. 武汉: 华中农业大学, 2020.
https://doi.org/10.27158/d.cnki.ghznu.2020.000402
[13]  Gubler, F., Chandler, P.M., White, R.G., Llewellyn, D.J. and Jacobsen, J.V. (2002) Gibberellin Signaling in Barley Aleurone Cells. Control of SLN1 and GAMYB Expression. Plant Physiology, 129, 191-200.
https://doi.org/10.1104/pp.010918
[14]  Peng, J. and Harberd, N.P. (2002) The Role of GA-Mediated Signaling in the Control of Seed Germination. Current Opinion in Plant Biology, 5, 376-381.
https://doi.org/10.1016/S1369-5266(02)00279-0
[15]  周述波, 贺立静, 林伟, 贺立红. 外源赤霉酸对杂交水稻亲本种子萌发的生理影响[J]. 种子, 2016, 35(12): 35-38.
https://doi.org/10.16590/j.cnki.1001-4705.2016.12.035
[16]  Kende, H., Van der Knaap, E. and Cho, H.T. (1998) Deepwater Rice: A Model Plant to Study Stem Elongation. Plant Physiology, 118, 1105-1110.
https://doi.org/10.1104/pp.118.4.1105
[17]  Nishiuchi, S., Yamauchi, T., Takahashi, H., et al. (2012) Mechanisms for Coping with Submergence and Waterlogging in Rice. Rice, 5, Article No. 2.
https://doi.org/10.1186/1939-8433-5-2
[18]  武辉, 向镜, 陈惠哲, 等. 外源调节剂对淹涝水稻幼苗株高及碳水化合物消耗的影响[J]. 应用生态学报, 2018, 29(1): 149-157.
[19]  Das, K.K., Sarkar, R.K. and Ismail, A.M. (2005) Elongation Ability and Non-Structural Carbohydrate Levels in Relation to Submergence Tolerance in Rice. Plant Science, 168, 131-136.
https://doi.org/10.1016/j.plantsci.2004.07.023
[20]  Benschop, J.J., et al. (2006) Long-Term Submergence-Induced Elongation in Rumex palustris Requires Abscisic Acid-Dependent Biosynthesis of Gibberellin. Plant Physiology, 141, 1644-1652.
https://doi.org/10.1104/pp.106.082636
[21]  Fukao, T. and Bailey-Serres, J. (2008) Submergence Tolerance Conferred by Sub1A Is Mediated by SLR1 and SLRL1 Restriction of Gibberellin Responses in Rice. Proceedings of the National Academy of Sciences of the United States of America, 105, 16814-16189.
https://doi.org/10.1073/pnas.0807821105
[22]  Wu, H., Chen, H., Zhang, Y., et al. (2019) Effects of 1-Aminocyclopropane-1-Carboxylate and Paclobutrazol on the Endogenous Hormones of Two Contrasting Rice Varieties under Submergence Stress. Plant Growth Regulation, 87, 109-121.
https://doi.org/10.1007/s10725-018-0457-6
[23]  章孟臣. 水稻耐淹发芽相关性状的全基因组关联分析[D]: [硕士学位论文]. 北京: 中国农业科学院, 2016.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133