|
Botanical Research 2022
水稻籼粳品种对铊(I/III)吸收能力比较及根系草酸分泌特征
|
Abstract:
铊是一种高毒性的重金属元素,具有Tl(I)和Tl(III)两种价态,Tl(III)比Tl(I)毒性更强,通过植物富集进入食物链的方式严重威胁人类健康。本文通过水培方法培育4个籼粳水稻品种,利用两种价态铊进行处理,研究铊吸收量及水稻根系草酸分泌量的关系。结果表明:籼稻的黄广金占与中嘉早17、粳稻的日本晴与秀水123,在Tl(I)处理中的铊吸收量分别为0.21 mg?g?1 FW与0.16 mg?g?1 FW、0.19 mg?g?1 FW与0.14 mg?g?1 FW,水稻对Tl的吸收量与所属亚种并无明显关系;在Tl(III)处理中,这四种水稻的铊吸收量分别下降至0.18 mg?g?1 FW与0.13 mg?g?1 FW、0.17 mg?g?1 FW与0.11 mg?g?1 FW,均显著低于各品种在Tl(I)处理的铊吸收;对铊吸收量与草酸分泌量进行二次函数回归分析,相关系数r = 0.474,相关性低。表明两种价态铊处理下根系草酸分泌量对铊吸收的影响较小,水稻根系铊吸收受其他机制作用。
Thallium is a highly toxic heavy metal element with two valence states of Tl(I) and Tl (III). Tl(III) is more toxic than Tl(I). It seriously threatens human health by entering the food chain through plant enrichment. In this paper, four indica and japonica rice varieties were cultivated by hydroponic method and treated with two kinds of valence thallium to study the relationship between thallium absorption and oxalic acid secretion of rice roots. The results showed that the thallium absorption of Indica Rice Huangguangjinzhan and Zhongjiazao 17, japonica rice Nipponbare and Xiushui 123 in Tl(I) treatment are 0.21 mg?g?1 FW and 0.16 mg?g?1 FW, 0.19 mg?g?1 FW and 0.14 mg?g?1 FW respectively. There is no significant relationship between the Tl absorption of rice and its subspecies; In Tl(III) treatment, the thallium absorption of the four kinds of rice decreased to 0.18 mg?g?1 FW and 0.13 mg?g?1 FW, 0.17 mg?g?1 FW and 0.11 mg?g?1 FW respectively, which are significantly lower than that of all varieties in Tl(I) treatment; the quadratic regression analysis of thallium absorption and oxalic acid secretion showed that the correlation coefficient is r = 0.474, and the correlation is low. The results showed that the secretion of oxalic acid in roots had little effect on thallium absorption under the treatment of two valence thallium, and thallium absorption in rice roots was affected by other mechanisms.
[1] | Lan, C.H. and Lin, T.S. (2005) Acute Toxicity of Trivalent Thallium Compounds to Daphnia Magna. Ecotoxicology and Environmental Safety, 61, 432-435. https://doi.org/10.1016/j.ecoenv.2004.12.021 |
[2] | Liu, J., Wang, J., Chen, Y., Shen, C.C., Jiang, X., Chen, D., Lippold, H. and Wang C. (2016) Thallium Dispersal and Contamination in Surface Sediments from South China and Its Source Identification. Environmental Pollution, 213, 878-887. https://doi.org/10.1016/j.envpol.2016.03.023 |
[3] | Xiao, T., Guha, J., Boyle, D., Liu, C.Q., Zheng, B., Wilson, G.C., Rouleau, A. and Chen, J. (2004) Naturally Occurring Thallium: A Hidden Geoenvironmental Health Hazard? Environment International, 30, 501-507.
https://doi.org/10.1016/j.envint.2003.10.004 |
[4] | 周全. 籼、粳稻镉积累差异及机理的研究[D]: [硕士学位论文]. 北京: 中国农业科学院, 2016. |
[5] | 傅晓萍, 豆长明, 胡少平, 陈新才, 施积炎, 陈英旭. 有机酸在植物对重金属耐性和解毒机制中的作用[J]. 植物生态学报, 2010, 34(11): 1354-1358. |
[6] | Brunner, I. and Sperisen, C. (2013) Aluminum Exclusion and Aluminum Tolerance in Woody Plants. Frontiers in Plant Science, 4, Article No. 172. https://doi.org/10.3389/fpls.2013.00172 |
[7] | 刘芳, 王摸云, 杨睿祺, 杨钊楠, 张平, 姚焱. 重金属铊胁迫下水稻(Oryza sativa L.)根系草酸含量与铊吸收的关系[J]. 中国农业科技导报, 2021, 23(3): 34-40. |
[8] | 刘建国. 水稻品种对土壤重金属镉铅吸收分配的差异及其机理[D]: [博士学位论文]. 扬州: 扬州大学, 2004. |
[9] | 王摸云, 郑婉铭, 杨睿祺, 张平, 刘文峰, 姚焱. 铊胁迫下甘蓝根系有机酸分泌特征及对铊吸收的影响[J]. 黑龙江农业科学, 2020, 43(5): 47-50. |
[10] | 关强, 蒲瑶瑶, 张欣, 王媛媛, 李大明, 李辉信, 胡锋, 焦加国, 管晓进. 长期施肥对水稻根系有机酸分泌和土壤有机碳组分的影响[J]. 土壤, 2018, 50(1): 115-121. |
[11] | 吴宇佳, 张文, 肖彤斌, 符传良, 吉清妹, 谢良商. 缺钾对不同基因型香蕉根系分泌物产生及土壤钾活化的影响[J]. 西南农业学报, 2017, 30(3): 624-628. |
[12] | Yan, F., Zhu, Y., Müller, C., Z?rb, C. and Schubert, S. (2002) Adaptation of H+-Pumping and Plasma Membrane H+ ATPase Activity in Proteoid Roots of White Lupin under Phosphate Deficiency. Plant Physiology, 129, 50-63.
https://doi.org/10.1104/pp.010869 |
[13] | Ligaba, A., Shen, H., Shibata, K., Yamamoto, Y., Tanakamaru, S. and Matsumoto, H. (2004) The Role of Phosphorus in Aluminium-Induced Citrate and Malate Exudation from Rape (Brassica napus). Physiologia Plantarum, 120, 575-584.
https://doi.org/10.1111/j.0031-9317.2004.0290.x |