|
老年人的认知功能及干预研究进展
|
Abstract:
随着年龄的增长,大脑的结构和功能都会发生变化,并表现出一定程度的认知功能的衰退,如加工速度、工作记忆、判断推理等功能的退化。认知老化不仅影响老年人的生活质量,严重时甚至影响日常生活。然而,认知功能的变化是复杂动态的。大量研究发现大脑可以通过新区域的激活或神经代偿性发展来补偿认知功能退化。并且通过适当的干预措施可以改善老年人的认知功能,对大脑结构和功能产生积极影响。本文主要阐述了老年人的认知功能及脑成像变化,并介绍了延缓老年人认知功能下降的干预方式,以促进对认知功能老化及脑老化过程的深入理解。
With the increase of age, the structure and function of human brain will change, and show a cer-tain degree of cognitive function decline, such as processing speed, working memory, judgment reasoning and other functions of degradation. Cognitive aging not only affects the quality of life of the elderly, but even seriously affects daily life. However, changes in cognitive function are complex and dynamic. Numerous studies have found that the brain can compensate for cognitive decline through activation of new areas or compensatory neural development. Through appropriate interventions, it can improve the cognitive function of the elderly, and positively impact brain structure and functioning. This paper mainly expatiates the changes of cognitive function and brain imaging in the elderly, and introduces the intervention methods to delay the decline of cognitive function, to promote the further understanding of cognitive aging and brain aging.
[1] | 付艳, 王大华(2009). 认知老化与脑: Harold模型之争. 心理科学进展, 17(1), 86-91. |
[2] | 韩笑, 石岱青, 周晓文, 杨颖华, 朱祖德(2016). 认知训练对健康老年人认知能力的影响. 心理科学进展, 24(6), 909-933. |
[3] | 李德明, 陈天勇(2003). 认知功能年老化的特点、理论及干预. 中国老年学杂志, 23(12), 805-806. |
[4] | 罗跃嘉(2005). 认知神经科学教程. 北京大学出版社. |
[5] | 宋艳丽, 刘伟(2019). 有氧运动操对养老机构轻度认知障碍老人的干预. 中国老年学杂志, 39(13), 3176-3178. |
[6] | 宇佳利, 王磊(2018). 认知老化的发生机制及影响因素研究进展. 中国老年学杂志, 38(18), 4595-4598. |
[7] | 张爽(2018). 老年人认知功能影响因素及提升措施. 中国老年学杂志, 38(24), 6142-6143. |
[8] | 张智君(2001). 认知老化的特征、影响因素及干预方法. 中国老年学杂志, 21(5), 395-397. |
[9] | 郑妍, 陈桂秋, 马思慧, 王学菊(2020). 有氧运动联合认知训练干预老年人轻度认知功能障碍的作用. 中国老年学杂志, 40(18), 4016-4019. |
[10] | Anguera, J. A., Boccanfuso, J., Rintoul, J., Al-Hashimi, O., Faraji, F., Janowich, J., Kong, E., Larraburo, Y., Rolle, C. E., Johnston, E., & Gazzaley, A. (2013). Video Game Training Enhances Cognitive Control in Older Adults. Nature, 501, 97-101. https://doi.org/10.1038/nature12486 |
[11] | Cabeza, R. (2002). Hemispheric Asymmetry Reduction in Older Adults: The Harold Model. Psychology & Aging, 17, 85-100. https://doi.org/10.1037/0882-7974.17.1.85 |
[12] | Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Qué pasa? The Posterior-Anterior Shift in Aging. Cerebral Cortex, 18, 1201-1209. https://doi.org/10.1093/cercor/bhm155 |
[13] | Dustman, R. E., Ruhling, R. O., Russell, E. M., Shearer, D. E., Bonekat, H. W., Shigeoka, J. W., Wood, J. S., & Bradford, D. C. (1984). Aerobic Exercise Training and Improved Neuropsychological Function of Older Individuals. Neurobiology of Aging, 5, 35-42. https://doi.org/10.1016/0197-4580(84)90083-6 |
[14] | Engvig, A., Fjell, A. M., Westlye, L. T., Moberget, T., Sundseth, ?., Larsen, V. A., & Walhovd, K. B. (2010). Effects of Memory Training on Cortical Thickness in the Elderly. NeuroImage, 52, 1667-1676.
https://doi.org/10.1016/j.neuroimage.2010.05.041 |
[15] | Fan, Y., Fang, Y., Chen, Y., Leshikar, E. D., Lin, C., Tzeng, O. J., Huang, H., & Huang, C. (2019). Aging, Cognition, and the Brain: Effects of Age-Related Variation in White Matter Integrity on Neuropsychological Function. Aging & Mental Health, 23, 831-839. https://doi.org/10.1080/13607863.2018.1455804 |
[16] | Fjell, A. M., Walhovd, K. B., Reinvang, I., Lundervold, A., Salat, D., Quinn, B. T., & Dale, A. M. (2006). Selective Increase of Cortical Thickness in High-Performing Elder-ly—Structural Indices of Optimal Cognitive Aging. NeuroImage, 29, 984-994. https://doi.org/10.1016/j.neuroimage.2005.08.007 |
[17] | Gunning-Dixon, F. M., & Raz, N. (2000). The Cognitive Correlates of White Matter Abnormalities in Normal Aging: A Quantitative Review. Neuropsychology, 14, 224-232. https://doi.org/10.1037/0894-4105.14.2.224 |
[18] | Hasher, L., & Zacks, R. T. (1988). Working Memory, Comprehension, and Aging: A Review and a New View. Psychology of Learning and Motivation, 22, 193-225. https://doi.org/10.1016/S0079-7421(08)60041-9 |
[19] | Hasher, L., Lustig, C., & Zacks, R. (2007). Inhibitory Mechanisms and the Control of Attention. Oxford University Press.
https://doi.org/10.1093/acprof:oso/9780195168648.003.0009 |
[20] | Korsch, M., Frühholz, S., & Herrmann, M. (2016). Conflict-Specific Aging Effects Mainly Manifest in Early Information Processing Stages—An ERP Study with Different Conflict Types. Frontiers in Aging Neuroscience, 8, Article 53.
https://doi.org/10.3389/fnagi.2016.00053 |
[21] | Li, L., Gratton, C., Fabiani, M., & Knight, R. T. (2013). Age-Related Frontoparietal Changes during the Control of Bottom-Up and Top-Down Attention: An ERP Study. Neurobiology of Aging, 34, 477-478.
https://doi.org/10.1016/j.neurobiolaging.2012.02.025 |
[22] | Madden, D. J., Parks, E. L., Davis, S. W., Diaz, M. T., Potter, G. G., Chou, Y. H., Chen, N., & Cabeza, R. (2014). Age Mediation of Frontoparietal Activation during Visual Feature Search. NeuroImage, 102, 262-274.
https://doi.org/10.1016/j.neuroimage.2014.07.053 |
[23] | Madden, D. J., Spaniol, J., Whiting, W. L., Bucur, B., Provenzale, J. M., Cabeza, R., White, L. E., & Huettel, S. A. (2007). Adult Age Differences in the Functional Neuroanatomy of Visual Attention: A Combined fMRI and DTI Study. Neurobiology of Aging, 28, 459-476. https://doi.org/10.1016/j.neurobiolaging.2006.01.005 |
[24] | Mertes, C., Wascher, E., & Schneider, D. (2017). Compliance Instead of Flexibility? On age-related differences in Cognitive Control during Visual Search. Neurobiology of Aging, 53, 169-180. https://doi.org/10.1016/j.neurobiolaging.2017.02.003 |
[25] | Park, D. C., & Reuter-Lorenz, P. (2009). The Adaptive Brain: Aging and Neurocognitive Scaffolding. Annual Review of Psychology, 60, 173-196. https://doi.org/10.1146/annurev.psych.59.103006.093656 |
[26] | Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., & Acker, J. D. (2005). Regional Brain Changes in Aging Healthy Adults: General Trends, Individual Differences and Modifiers. Cerebral Cortex, 15, 1676-1689.
https://doi.org/10.1093/cercor/bhi044 |
[27] | Reuter-Lorenz, P. A., & Cappell, K. (2008). Neurocognitive Aging and the Compensation Hypothesis. Current Directions in Psychological Science, 17, 177-182. https://doi.org/10.1111/j.1467-8721.2008.00570.x |
[28] | Salat, D. H., Buckner, R. L., Snyder, A. Z., Greve, D. N., Desikan, R. S., Busa, E., Morris, J. C., Dale, A. M., & Fischl, B. R. (2004). Thinning of the Cerebral Cortex in Aging. Cerebral Cortex, 14, 721-730. https://doi.org/10.1093/cercor/bhh032 |
[29] | Salthouse, T. A. (1996). The Processing-Speed Theory of Adult Age Differences in Cognition. Psychological Review, 103, 403-428. https://doi.org/10.1037/0033-295X.103.3.403 |
[30] | Salthouse, T. A. (2010). Selective Review of Cognitive Aging. Journal of the International Neuropsychological Society, 16, 754-760. https://doi.org/10.1017/S1355617710000706 |
[31] | Tsai, C., Ukropec, J., Ukropcová, B., & Pai, M. (2018). An Acute bout of Aerobic or Strength Exercise Specifically Modifies Circulating Exerkine Levels and Neurocognitive Functions in Elderly Individuals with Mild Cognitive Impairment. NeuroImage, 17, 272-284. https://doi.org/10.1016/j.nicl.2017.10.028 |