|
胆汁酸水平与急性缺血性脑卒预后的相关性
|
Abstract:
血清总胆汁酸既往多用于肝脏疾病诊断,近年来研究发现许多疾病如高血压、糖尿病、冠心病、脑血管疾病等患者的血清总胆汁酸水平都发生变化。已有一些研究证明胆汁酸通过多种机制参与糖脂代谢和脑卒中急性期炎症反应等多个方面。作者基于最新文献对胆汁酸可能对急性缺血性脑卒中患者产生神经保护的机制和临床预后进行了综述,可以为这个领域提供参考。
Serum total bile acid was mainly used for the diagnosis of liver diseases in the past. In recent years, studies have found that the serum total bile acid levels of patients with many diseases such as hy-pertension, diabetes, coronary heart disease, cerebrovascular diseases and other diseases have changed. Some studies have shown that bile acids participate in glycolipid metabolism and inflam-matory responses in the acute phase of stroke through a variety of mechanisms. Based on the latest literature, the authors reviewed the possible neuroprotective mechanisms and clinical prognosis of bile acids in patients with acute ischemic stroke, which could provide reference for this field.
[1] | Li, W., Shu, S., Cheng, L., et al. (2020) Fasting Serum Total Bile Acid Level Is Associated with Coronary Artery Dis-ease, Myocardial Infarction and Severity of Coronary Lesions. Atherosclerosis, 292, 193-200.
https://doi.org/10.1016/j.atherosclerosis.2019.11.026 |
[2] | 张永生, 吴平生, 刘伊丽. 高血压病患者血浆总胆汁酸水平与动态血压参数的关系[J]. 中华心血管病杂志, 1998(6): 452. |
[3] | Bühler, H., Perschel, F.H., Fitzner, R., et al. (1994) Endogenous Inhibitors of 11 Beta-OHSD: Existence and Possible Significance. Steroids, 59, 131-135. https://doi.org/10.1016/0039-128X(94)90090-6 |
[4] | Steiner, C., Othman, A., Saely, C.H., et al. (2011) Bile acid Metabolites in Serum: Intraindividual Variation and Associations with Coronary Heart Disease, Metabolic Syndrome and Diabetes Mellitus. PLoS One, 6, e25006.
https://doi.org/10.1371/journal.pone.0025006 |
[5] | Kawasaki, H., Yamanishi, Y., Miyake, M., et al. (1986) Age- and Sex-Related Profiles of Serum Primary and Total Bile Acids in Infants, Children and Adults. The Tohoku Journal of Experimental Medicine, 150, 353-357.
https://doi.org/10.1620/tjem.150.353 |
[6] | Luo, L., Aubrecht, J., Li, D., et al. (2018) Assessment of Serum Bile Acid Profiles as Biomarkers of Liver Injury and Liver Disease in Humans. PLoS One, 13, e0193824. https://doi.org/10.1371/journal.pone.0193824 |
[7] | Bennion, L.J., Drobny, E., Knowler, W.C., et al. (1978) Sex Differences in the Size of Bile Acid Pools. Metabolism, 27, 961-969. https://doi.org/10.1016/0026-0495(78)90140-3 |
[8] | Tran, T.T., Ahn, J. and Reau, N.S. (2016) ACG Clinical Guideline: Liver Disease and Pregnancy. American Journal of Gastroenterology, 111, 176-194; quiz 196. https://doi.org/10.1038/ajg.2015.430 |
[9] | 吴军, 杨述红, 刘晓峰, 等. 东北地区某部歼击机飞行员血清总胆汁酸分布调查[J]. 吉林医学, 2010, 31(28): 4968. |
[10] | Chiang, J.Y. (2013) Bile Acid Metabolism and Signaling. Com-prehensive Physiology, 3, 1191-1212.
https://doi.org/10.1002/cphy.c120023 |
[11] | 李晓鸥, 丛占杰. 血清总胆汁酸测定对心脑血管疾病的诊断意义[J]. 长春中医药大学学报, 2008, 24(6): 764. |
[12] | 李艳, 扈昕虹, 袁忠海, 等. 心脑血管疾病患者血清总胆汁酸与血脂分析[J]. 吉林医药学院学报, 2005, 26(4): 203-205. |
[13] | 卢丹, 方宁远, 汪海娅. 胆汁酸与高血压的关系[J]. 中华老年病研究电子杂志, 2021, 8(1): 41-44. |
[14] | 施有为, 张君良, 刘江潮, 等. 高血压病患者血浆总胆汁酸水平增高的临床意义[J]. 临床荟萃, 2000, 15(2): 54-55. |
[15] | Tominaga, T., Suzuki, H., Ogata, Y., et al. (1988) Bile Acids Are Able to Reduce Blood Pressure by Attenuating the Vascular Reactivity in Spontaneously Hypertensive Rats. Life Sciences, 42, 1861-1868.
https://doi.org/10.1016/0024-3205(88)90025-2 |
[16] | Schiedermaier, P., Hansen, S., Asdonk, D., et al. (2000) Ef-fects of Ursodeoxycholic Acid on Splanchnic and Systemic Hemodynamics. A Double-Blind, Cross-Over, Place-bo-Controlled Study in Healthy Volunteers. Digestion, 61, 107-112.
https://doi.org/10.1159/000007742 |
[17] | 陆卫东. 联合血清总胆汁酸测定心脑血管疾病临床诊断意义分析[J]. 现代诊断与治疗, 2012, 23(12): 2194. |
[18] | 宫京梅, 程英. 血清总胆汁酸水平在冠心病患者的变化及回归分析[J]. 宁夏医学杂志, 2016, 38(7): 595-597. |
[19] | Chong, N.C., Duboc, D., Rainteau, D., et al. (2021) Circulating Bile Acids Concentration Is Predictive of Coronary Artery Disease in Human. Scientific Reports, 11, Article No. 22661. https://doi.org/10.1038/s41598-021-02144-y |
[20] | 朱蕾. 血清胆红素、胆汁酸水平与糖尿病大血管病变的关系研究[J]. 糖尿病新世界, 2017, 20(6): 11-13. |
[21] | 马心迪. 高胆固醇血症的药物治疗新进展[J]. 河北医科大学学报, 2020, 41(3): 346-350. |
[22] | Liu, H., Pathak, P., Boehme, S., et al. (2016) Cholesterol 7α-Hydroxylase Protects the Liver from Inflammation and Fibrosis by Maintaining Cholesterol Homeostasis. Journal of Lipid Research, 57, 1831-1844.
https://doi.org/10.1194/jlr.M069807 |
[23] | Perino, A., Pols, T.W.H., Nomura, M., et al. (2014) TGR5 Reduces Macrophage Migration through mTOR-Induced C/EBPβ Differential Translation. Journal of Clinical Investigation, 124, 5424-5436. https://doi.org/10.1172/JCI76289 |
[24] | Sayin, S.I., Wahlstr?m, A., Felin, J., et al. (2013) Gut Microbi-ota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-Beta-Muricholic Acid, a Naturally Occurring FXR Antagonist. Cell Metabolism, 17, 225-235.
https://doi.org/10.1016/j.cmet.2013.01.003 |
[25] | Charach, G., Rabinovich, A., Argov, O., et al. (2012) The Role of Bile Acid Excretion in Atherosclerotic Coronary Artery Disease. International Journal of Vascular Medicine, 2012, Arti-cle ID: 949672.
https://doi.org/10.1155/2012/949672 |
[26] | Pols, T.W. (2014) TGR5 in Inflammation and Cardiovascular Disease. Biochemical Society Transactions, 42, 244-249.
https://doi.org/10.1042/BST20130279 |
[27] | 徐辰祺, 卜军, 何奔. 胆汁酸在心血管疾病中的作用[J]. 生理科学进展, 2015, 46(6): 424-428. |
[28] | Gylling, H., Hallikainen, M., Rajaratnam, R.A., et al. (2009) The Metabolism of Plant Sterols Is Disturbed in Postmenopausal Women with Coronary Artery Disease. Metabolism, 58, 401-407.
https://doi.org/10.1016/j.metabol.2008.10.015 |
[29] | Ding, L., Chang, M., Guo, Y., et al. (2018) Trimethyla-mine-N-Oxide (TMAO)-Induced Atherosclerosis Is Associated with Bile Acid Metabolism. Lipids in Health and Dis-ease, 17, Article No. 286.
https://doi.org/10.1186/s12944-018-0939-6 |
[30] | 肖丹, 邵勇. 胆汁酸膜受体TGR5与代谢相关疾病的研究进展[J]. 肝脏, 2013, 18(11): 776-779. |
[31] | Ma, J. and Li, H. (2018) The Role of Gut Microbiota in Atherosclerosis and Hypertension. Frontiers in Pharmacology, 9, 1082. https://doi.org/10.3389/fphar.2018.01082 |
[32] | Bode, N., Grebe, A., Kerksiek, A., et al. (2016) Ursodeoxycholic Acid Impairs Atherogenesis and Promotes Plaque Regression by Cholesterol Crystal Dissolution in Mice. Biochemical and Biophysical Research Communications, 478, 356-362. https://doi.org/10.1016/j.bbrc.2016.07.047 |
[33] | Qin, P., Tang, X., Elloso, M.M., et al. (2006) Bile Acids Induce Adhesion Molecule Expression in Endothelial Cells through Activation of Reactive Oxygen Species, NF-kappaB, and p38. American Journal of Physiology-Heart and Circulatory Physiology, 291, H741-7. https://doi.org/10.1152/ajpheart.01182.2005 |
[34] | Guo, G.L., Santamarina-Fojo, S., Akiyama, T.E., et al. (2006) Effects of FXR in Foam-Cell Formation and Atherosclerosis Development. Biochimica et Biophysica Acta, 1761, 1401-1409. https://doi.org/10.1016/j.bbalip.2006.09.018 |
[35] | Zhang, Y., Wang, X., Vales, C., et al. (2006) FXR Deficiency Causes Reduced Atherosclerosis in Ldlr?/? Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 2316-2321.
https://doi.org/10.1161/01.ATV.0000235697.35431.05 |
[36] | Hanniman, E.A., Lambert, G., McCarthy, T.C., et al. (2005) Loss of Functional Farnesoid X Receptor Increases Atherosclerotic Lesions in Apolipoprotein E-Deficient Mice. Journal of Lipid Research, 46, 2595-2604.
https://doi.org/10.1194/jlr.M500390-JLR200 |
[37] | Yuan, H.W., Yang, Y.N.,?Chen, H.F., et al. (2020) Rise in Low-Density Lipoprotein Cholesterol during Hospitalization is Related with Poor Outcome at Discharge in Patients with Acute Ischemic Stroke. Cerebrovascular Diseases, 49, 88-96. https://doi.org/10.1159/000505615 |
[38] | 卓观宏. 血脂水平对初发脑卒中患者预后的评估价值分析[J]. 现代诊断与治疗, 2015, 26(8): 1818-1819. |
[39] | 顾淑娥, 杨平, 马大伟, 杜彦辉. 缺血性脑卒中急性期患者血脂水平与预后的关系[J]. 宁夏医科大学学报, 2011, 33(5): 470-472. |
[40] | Yuan, J., Cai, J., Zhao, P., et al. (2021) Association between Low-Density Lipoprotein Cholesterol and Platelet Distribution Width in Acute Ischemic Stroke. Frontiers in Neurology, 12, 631227.
https://doi.org/10.3389/fneur.2021.631227 |
[41] | 公言伟, 李建国. 胆汁酸与冠心病的关系[J]. 临床医药实践, 2016, 25(8): 612-614. |
[42] | 郑海斌, 阮连生, 俞根龙, 等. 血清同型半胱氨酸、超敏C反应蛋白、胆汁酸检测在心脑血管病诊断中意义[J]. 心脑血管病防治, 2013, 13(3): 207-208. |
[43] | Holmes, K.W. and Kwiterovich, P.J. (2005) Treatment of Dyslipidemia in Children and Adolescents. Current Cardiology Reports, 7, 445-456. https://doi.org/10.1007/s11886-005-0063-x |
[44] | 中华医学会糖尿病学分会与中华医学会外科学分会. 手术治疗糖尿病专家共识[J]. 中华糖尿病杂志, 2011, 3(3): 205-208. |
[45] | 张久聪, 聂青和. 胆汁酸代谢及相关进展[J]. 胃肠病学和肝病学杂志, 2008, 17(11): 953-956. |
[46] | Bhat, B.G., Rapp, S.R., Beaudry, J.A., et al. (2003) Inhibition of Ileal Bile Acid Transport and Reduced Atherosclerosis in apoE-/-Mice by SC-435. Journal of Lipid Research, 44, 1614-1621. https://doi.org/10.1194/jlr.M200469-JLR200 |
[47] | Izzat, N.N., Deshazer, M.E. and Loose-Mitchell, D.S. (2000) New Molecular Targets for Cholesterol-Lowering Therapy. Journal of Pharmacology and Experimental Therapeutics, 293, 315-320. |
[48] | McMillin, M. and DeMorrow, S. (2016) Effects of Bile Acids on Neurological Func-tion and Disease. The FASEB Journal, 30, 3658-3668. https://doi.org/10.1096/fj.201600275R |
[49] | Mertens, K.L., Kalsbeek, A., Soeters, M.R., et al. (2017) Bile Acid Signaling Pathways from the Enterohepatic Circulation to the Central Nervous System. Frontiers in Neurology, 11, 617. https://doi.org/10.3389/fnins.2017.00617 |
[50] | 曲澄澄, 丰宏林. 血清总胆汁酸对缺血性脑卒中影响的研究现状[J]. 神经疾病与精神卫生, 2020, 20(10): 698-701. |
[51] | 刘明, 马迅. 血清总胆汁酸检测在脑血管疾病中的临床意义[J]. 潍坊医学院学报, 2004, 26(1): 32-33. |
[52] | 沈小丽, 郭嘉. 心脑血管病患者血清胆汁酸、同型半胱氨酸及超敏-C反应蛋白水平变化与诊断意义[J]. 现代医学与健康研究(电子版), 2021, 5(20): 85-87. |
[53] | 张玉芝, 张旭光, 王淑娜, 裴景亮. 脂蛋白(a)、同型半胱氨酸、总胆汁酸联合检测对脑梗死诊断的应用研究[J]. 中国卫生检验杂志, 2018, 28(24): 2991-2992. |
[54] | Rodrigues, C.M., Spellman, S.R., Solá, S., et al. (2002) Neuroprotection by a Bile Acid in an Acute Stroke Model in the Rat. Journal of Cerebral Blood Flow & Metabolism, 22, 463-471.
https://doi.org/10.1097/00004647-200204000-00010 |
[55] | Huang, L., Xu, G., Zhang, R., et al. (2022) Increased Admission Serum Total Bile Acids Can Be Associated with Decreased 3-Month Mortality in Patients with Acute Is-chemic Stroke. Lipids in Health and Disease, 21, Article No. 15.
https://doi.org/10.1186/s12944-021-01620-8 |
[56] | Rodrigues, C.M., Solá, S., Nan, Z., et al. (2003) Tauroursode-oxycholic Acid Reduces Apoptosis and Protects against Neurological Injury after Acute Hemorrhagic Stroke in Rats. Proceedings of the National Academy of Sciences of the United States of America, 100, 6087-6092. https://doi.org/10.1073/pnas.1031632100 |
[57] | Grant, S.M. and DeMorrow, S. (2020) Bile Acid Signaling in Neu-rodegenerative and Neurological Disorders. International Journal of Molecular Sciences, 21, 5982. https://doi.org/10.3390/ijms21175982 |
[58] | Charach, G., Karniel, E., Novikov, I., et al. (2020) Reduced Bile Acid Excretion Is an Independent Risk Factor for Stroke and Mortality: A Prospective Follow-Up Study. Atherosclerosis, 293, 79-85.
https://doi.org/10.1016/j.atherosclerosis.2019.12.010 |
[59] | Bian, K.Y., Jin, H.-F., Sun, W. and Sun, Y.-J. (2019) DCA Can Improve the ACI-Induced Neurological Impairment through Negative Regulation of Nrf2 Signaling Pathway. European Review for Medical and Pharmacological Sciences, 23, 343-351. |
[60] | Sun, D., Gu, G., Wang, J., et al. (2017) Administration of Tauroursodeoxycholic Acid Attenuates Early Brain Injury via Akt Pathway Activation. Frontiers in Cellular Neuroscience, 11, 193. https://doi.org/10.3389/fncel.2017.00193 |
[61] | Yanguas-Casás, N., Barreda-Manso, M.A., Nieto-Sampedro, M., et al. (2014) Tauroursodeoxycholic Acid Reduces Glial Cell Activation in an Animal Model of Acute Neuroinflammation. Journal of Neuroinflammation, 11, Article No. 50. https://doi.org/10.1186/1742-2094-11-50 |
[62] | Yanguas-Casás, N., Barreda-Manso, M.A., Nieto-Sampedro, M., et al. (2017) TUDCA: An Agonist of the Bile Acid Receptor GPBAR1/TGR5 with Anti-Inflammatory Effects in Microgli-al Cells. Journal of Cellular Physiology, 232, 2231-2245. https://doi.org/10.1002/jcp.25742 |
[63] | Gronbeck, K.R., Rodrigues, C.M.P., Mahmoudi, J., et al. (2016) Application of Tauroursodeoxycholic Acid for Treatment of Neurologi-cal and Non-neurological Diseases: Is There a Potential for Treating Traumatic Brain Injury? Neurocritical Care, 25, 153-166. https://doi.org/10.1007/s12028-015-0225-7 |
[64] | 夏鹏, 夏骏. 血清胆汁酸亚组分TDCA与脑卒中高危人群发生心脑血管事件的关系[J]. 浙江医学, 2021, 43(11): 1180-1183. |
[65] | Sinal, C.J., Tohkin, M., Miyata, M., et al. (2000) Targeted Disruption of the Nuclear Receptor FXR/BAR Impairs Bile Acid and Lipid Homeostasis. Cell, 102, 731-744. https://doi.org/10.1016/S0092-8674(00)00062-3 |
[66] | Guo, C., Xie, S., Chi, Z., et al. (2016) Bile Acids Control Inflammation and Metabolic Disorder through Inhibition of NLRP3 Inflammasome. Immunity, 45, 802-816. https://doi.org/10.1016/j.immuni.2016.09.008 |
[67] | Shan, H., Zang, M., Zhang, Q., et al. (2020) Farnesoid X Re-ceptor Knockout Protects Brain against Ischemic Injury through Reducing Neuronal Apoptosis in Mice. Journal of Neu-roinflammation, 17, 164.
https://doi.org/10.1186/s12974-020-01838-w |
[68] | Kida, T., Omori, K., Hori, M., et al. (2014) Stimulation of G Protein-Coupled Bile Acid Receptor Enhances Vascular Endothelial Barrier Function via Activation of Protein Kinase A and Rac1. Journal of Pharmacology and Experimental Therapeutics, 348, 125-130. https://doi.org/10.1124/jpet.113.209288 |
[69] | Liang, H., Matei, N., McBride, D.W., et al. (2020) Activation of TGR5 Protects Blood Brain Barrier via the BRCA1/Sirt1 Pathway after Middle Cerebral Artery Occlusion in Rats. Journal of Biomedical Science, 27, Article No. 61.
https://doi.org/10.1186/s12929-020-00656-9 |
[70] | 杜天艺. TGR5抑制炎症通路的分子机制[D]: [硕士学位论文]. 北京: 北京化工大学, 2018. |
[71] | Liang, H., Matei, N., McBride, D.W., et al. (2021) TGR5 Activation Attenuates Neuroinflammation via Pellino3 Inhibition of Caspase-8/NLRP3 after Middle Cerebral Artery Occlusion in Rats. Journal of Neuroinflammation, 18, Article No. 40. https://doi.org/10.1186/s12974-021-02087-1 |
[72] | Zuo, G., Zhang, T., Huang, L., et al. (2019) Activation of TGR5 with INT-777 Attenuates Oxidative Stress and Neuronal Apoptosis via cAMP/PKCε/ALDH2 Pathway after Subarachnoid Hemorrhage in Rats. Free Radical Biology and Medicine, 143, 441-453. https://doi.org/10.1016/j.freeradbiomed.2019.09.002 |
[73] | Franke, M., Bieber, M., Kraft, P., et al. (2021) The NLRP3 Inflammasome Drives Inflammation in Ischemia/Reperfusion Injury after Transient Middle Cerebral Artery Occlusion in Mice. Brain, Behavior, and Immunity, 92, 223-233. https://doi.org/10.1016/j.bbi.2020.12.009 |
[74] | Yang, F., Wang, Z., Wei, X., et al. (2014) NLRP3 Deficiency Ame-liorates Neurovascular Damage in Experimental Ischemic Stroke. Journal of Cerebral Blood Flow & Metabolism, 34, 660-667. https://doi.org/10.1038/jcbfm.2013.242 |
[75] | 吴县, 洪浩. 胆汁酸及其受体与中枢神经系统疾病[J]. 神经药理学报, 2019, 9(1): 23-30. |
[76] | Yang, Y.Y., Shang, J. and Liu, H.G. (2013) Role of Endoplasmic Reticular Stress in Aortic Endothelial Apoptosis Induced by Intermittent/Persistent Hypoxia. Chinese Medical Journal (English), 126, 4517-4523. |
[77] | Monnier, P.P., D’Onofrio, P.M., Magharious, M., et al. (2011) Involvement of Caspase-6 and Caspase-8 in Neuronal Apoptosis and the Regenerative Failure of Injured Retinal Ganglion Cells. Journal of Neurosci-ence, 31, 10494-10505.
https://doi.org/10.1523/JNEUROSCI.0148-11.2011 |
[78] | Shabanzadeh, A.P., D’Onofrio, P.M., Monnier, P.P., et al. (2015) Targeting Caspase-6 and Caspase-8 to Promote Neuronal Survival Following Ischemic Stroke. Cell Death & Disease, 6, e1967. https://doi.org/10.1038/cddis.2015.272 |