全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Energy and Material Flow Evaluation with CO2 Emissions in the Glass Production Process

DOI: 10.4236/ampc.2022.125007, PP. 82-105

Keywords: Energy Efficiency, Glass Industry, Energy Balance, Container Glass, Flat Glass, Glass Fiber

Full-Text   Cite this paper   Add to My Lib

Abstract:

Glass manufacturing is an energy-intensive process with high demands on?product quality. The wide usage of glass products results in a high end-product?diversity. In the past, many models have been developed to optimize specific process steps,?such as glass melting or glass forming. This approach presents a tool for the modeling of the entire glass manufacturing process for container glass, flat glass,?and glass fibers. The tool considers detailed bottom-up energy and material balance in each step of the processing route with the corresponding costs and CO2 emissions. Subsequently, it provides the possibility to quantify optimization scenarios in the entire glass manufacturing process in terms of energy, material and cost flow efficiency.

References

[1]  European Commission (2021) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. ‘Fit for 55’: Delivering the EU’s 2030 Climate Target on the Way to Climate Neutrality: COM. 550 Final. European Commission, Brussels.
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0550&from=EN
[2]  Zier, M., Stenzel, P., Kotzur, L. and Stolten, D. (2021) A Review of Decarbonization Options for the Glass Industry. Energy Conversion and Management: X, 10, Article ID: 100083.
https://doi.org/10.1016/j.ecmx.2021.100083
[3]  Verheijen, O.S. (2003) Thermal and Chemical Behavior of Glass Forming Batches. Technische Universiteit Eindhoven, Eindhoven.
[4]  Seward, T.P. (2003) Modeling of Glass Making Processes for Improved Efficiency. Final Report DE-FG07-96EE41262, NYSCC, Alfred University, Alfred, NY (US).
https://doi.org/10.2172/809193
[5]  Lankhorst, A., Thielen, L., van der Dennen, J. and del Hoyo Arroyo, M. (2014) Application of an Energy Balance Model for Improving the Energy Efficiency of Glass Melting Furnaces. 74th Glass Problems Conference, Columbus, 14-17 October 2013, 51-68.
https://doi.org/10.1002/9781118932964.ch6
[6]  Krause, D. and Loch, H. (Eds.) (2013) Mathematical Simulation in Glass Technology. 1st Edition, Springer, Berlin.
[7]  Choudhary, M.K. (2002) Recent Advances in Mathematical Modeling of Flow and Heat Transfer Phenomena in Glass Furnaces. Journal of the American Ceramic Society, 85, 1030-1036.
https://doi.org/10.1111/j.1151-2916.2002.tb00218.x
[8]  Habraken, A.F.J.A., Lankhorst, A.M., Verheijen, O.S. and Rongen, M. (2016) Glass Melt Quality Optimization by CFD Simulations and Laboratory Experiments. 76th Conference on Glass Problems, Columbus, 2-5 November 2015, 169-177.
https://doi.org/10.1002/9781119282471.ch14
[9]  Sardeshpande, V., Gaitonde, U.N. and Banerjee, R. (2007) Model Based Energy Benchmarking for Glass Furnace. Energy Conversion and Management, 48, 2718-2738.
https://doi.org/10.1016/j.enconman.2007.04.013
[10]  Beerkens, R.G.C. and van Limpt, J. (2002) Energy Efficiency Benchmarking of Glass Furnaces. 62nd Conference on Glass Problems: Ceramic Engineering and Science Proceedings, Vol. 23, Illinois, 16-17 October 2001, 93-105.
https://doi.org/10.1002/9780470294727.ch7
[11]  Dorn, C., Behrend, R., Uhlig, V., Trimis, D. and Krause, H. (2017) A Technology Comparison Concerning Scale Dependencies of Industrial Furnaces. A Case Study of Glass Production. Energy Procedia, 120, 388-394.
https://doi.org/10.1016/j.egypro.2017.07.230
[12]  Dominique, L., Fabien, B., Norbert, S. and Philippe, M. (2014) Radiation Impact on the Two-Dimensional Modeling of Glass Sheet Sagging and Tempering. 74th Conference on Glass Problems, Columbus, 14-17 October 2013, 109-116.
https://doi.org/10.1002/9781118932964.ch11
[13]  Fabien, B., Norbert, S., and Dominique, L. (2014) Two-Dimensional Modeling of the Entire Glass Sheet Forming Process, Including Radiative Effects. 74th Conference on Glass Problems, Columbus, 14-17 October 2013, 147-162.
https://doi.org/10.1002/9781118932964.ch15
[14]  Jiao, J., Bamiro, O., Lewis, D. and Zhu, X. (2015) 3-D Transient Non-Isothermal CFD Modeling for Gob Formation. 75th Conference on Glass Problems, Columbus, 3-6 November 2014, 183-200.
https://doi.org/10.1002/9781119117490.ch16
[15]  Groot, J.A.W.M., Mattheij, R.M.M. and Laevsky, K.Y. (2011) Mathematical Modelling of Glass Forming Processes. In: Farina, A., Klar, A., Mattheij, R.M.M., Mikeli’c, A., Siedow, N. and Fasano, A., Eds., Lecture Notes in Mathematics, Mathematical Models in the Manufacturing of Glass, Springer, Berlin, Heidelberg, 1-56.
https://doi.org/10.1007/978-3-642-15967-1_1
[16]  Biedermann, H., Raupenstrauch, H., Topic, M., Tschiggerl, K., Rauter, M., Egger, D., Doschek, K. and Raonic, Z. (2016) Entwicklung eines life-cycle-orientierten Ansatzes zur Bewertung energieeffizienter, nachhaltiger Gießereiprodukte. Forschungsbericht, Leoben.
[17]  Glass Alliance Europe (2021) Statistical Report 2020-2021. Glass Alliance Europe, Brussels.
[18]  Coss, S. (2015) Development and Application of a Model for Energy Efficiency Evaluation—Theoretical Development with an Application to the Foundry Industry. Montanuniversitat Leoben, Leoben.
[19]  Joint Research Centre (2013) Best Available Techniques (BAT) Reference Document for the Manufacture of Glass: Industrial Emissions Directive 2010/75/EU: Integrated Pollution Prevention and Control. Publications Office, Seville.
[20]  Pfaender, H.G. (1996) Schott Guide to Glass. Springer Science, Dordrecht.
https://doi.org/10.1007/978-94-011-0517-0
[21]  Falcone, R., Ceola, S., Daneo, A. and Maurina, S. (2011) The Role of Sulfur Compounds in Coloring and Melting Kinetics of Industrial Glass. Reviews in Mineralogy and Geochemistry, 73, 113-141.
https://doi.org/10.2138/rmg.2011.73.5
[22]  Trier, W. (1987) Glass furnaces: Design Construction and Operation. Society of Glass Technology, Sheffield.
[23]  Hubert, M. (2019) Industrial Glass Processing and Fabrication. In: Musgraves, J.D., Hu, J. and Calvez, L., Eds., Springer Handbook of Glass, Springer International Publishing, Cham, 1195-1231.
https://doi.org/10.1007/978-3-319-93728-1_34
[24]  Beerkens, R. (2008) Analysis of Elementary Process Steps in Industrial Glass Melting Tanks—Some Ideas on Innovations in Industrial Glass Melting. Ceramics-Silikaty, 52, 206-217.
[25]  Laniel, R., Hubert, M., Miroir, M. and Brient, A. (2019) Glass Shaping. In: Musgraves, J.D., Hu, J. and Calvez, L., Eds., Springer Handbooks, Springer Handbook of Glass, Springer International Publishing, Cham, 1259-1292.
https://doi.org/10.1007/978-3-319-93728-1_36
[26]  Jebsen-Marwedel, H. (2011) Glastechnische Fabrikationsfehler: “Pathologische” Ausnahmezustande des Werkstoffes Glas und ihre Behebung; Eine Brücke zwischen Wissenschaft, Technologie und Praxis. Springer, Berlin, Heidelberg.
[27]  Loewenstein, K.L. (1993)The Manufacturing Technology of Continuous Glass Fibres. 3rd Edition, Elsevier, Amsterdam.
[28]  Katte, H. (2008) Zur wirtschaftlichen Bedeutung der Gemgengeberechnung. In: Glastechnischen Tagung der Deutschen Glastechnischen Gesellschaft, Deutsche Glastechnische Gesellschaft, Hameln.
[29]  Hujova, M. (2017) Influence of Fining Agents on Glass Melting: A Review, Part 2. Ceramics-Silikaty, 61, 202-208.
https://doi.org/10.13168/cs.2017.0017
[30]  Verheijen, O.S. and Hubert, M. (2019) Batch Chemistry and Reactions. In: Musgraves, J.D., Hu, J. and Calvez, L., Eds., Springer Handbooks, Springer Handbook of Glass, Springer International Publishing, Cham, 1233-1258.
https://doi.org/10.1007/978-3-319-93728-1_35
[31]  Hujova, M. (2017) Influence of Fining Agents on Glass Melting: A Review, Part 1. Ceramics - Silikaty, 61, 119-126.
https://doi.org/10.13168/cs.2017.0006
[32]  Muller-Simon, H. (2011) Fining of Glass Melts. Reviews in Mineralogy and Geochemistry, 73, 337-361.
https://doi.org/10.2138/rmg.2011.73.12
[33]  Conradt, R. (2004) Chemical Structure, Medium Range Order, and Crystalline Reference State of Multicomponent Oxide Liquids and Glasses. Journal of Non-Crystalline Solids, 345-346, 16-23.
https://doi.org/10.1016/j.jnoncrysol.2004.07.038
[34]  Philpotts, A.R. and Ague, J.J. (2011) Principles of Igneous and Metamorphic Petrology. 2nd Edition, Cambridge University Press, Cambridge.
[35]  Conradt, R. (2008) The Industrial Glass-Melting Process. In: Hack, K., Ed., The SGTE Casebook, Elsevier, Amsterdam, 282-303.
https://doi.org/10.1533/9781845693954.2.282
[36]  Conradt, R. (2006) The Glass Melting Process-Treated as a Cyclic Process of an Imperfect Heat Exchanger. In: Varner, J.R., Seward, T.P. and Schaeffer, H.A., Eds., Ceramic Transactions Series, Advances in Fusion and Processing of Glass III, Vol. 141, John Wiley & Sons, Inc., Hoboken, 35-44.
https://doi.org/10.1002/9781118405949.ch2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133