全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于支持向量机的大学生心理健康分析模型研究
Research on College Students’ Mental Health Analysis Model Based on Support Vector Machine

DOI: 10.12677/AP.2022.125195, PP. 1631-1637

Keywords: 支持向量机,大学生,心理健康
SVM
, College, Mental Health

Full-Text   Cite this paper   Add to My Lib

Abstract:

大学生处于校园与社会多元化的复杂环境,易出现心理健康问题,存在分析时费时费力且具有主观性等问题,本文提出基于支持向量机的大学生心理健康分析方法。首先,构建高质量大学生心理健康语料库;其次,选取有效特征;再次,结合支持向量机算法,构建分析模型;最后,实验结果证明,测试构建的模型,正确率达到88.5%。因此,本文提出的方法有效、科学。
College students are in the complex environment of campus and social diversity, prone to mental health problems. There are time-consuming and laborious analysis and subjective problems. This paper proposes a support vector machine based mental health analysis method for college students. Firstly, the necessary corpus is constructed. Secondly, effective features are selected. Thirdly, combined with the support vector machine algorithm, the model is constructed. Finally, the accuracy of the constructed model is up to 88.5%. Therefore, the method proposed in this paper is effective and scientific.

References

[1]  陈秋伍, 魏惠梅(2020). K-means聚类算法在分析大学生心理健康的应用. 数码世界, (4), 144-145.
[2]  胡秀云(2016). 大学生心理健康数据模糊聚类分析研究. 硕士学位论文, 信阳: 信阳师范学院.
[3]  王亮申, 欧宗瑛, 朱玉才, 等(2005). 基于SVM的图像分类. 计算机应用与软件, 22(5), 98-99+126.
[4]  王维虎, 刘艳超, 程芳, 纪慎思(2021). 基于朴素贝叶斯算法的大学生心理健康分析研究. 心理学进展, 11(7), 1723-1731.
[5]  吴婷(2017). 基于K-means聚类算法的大学生心理管理系统研究. 硕士学位论文, 武汉: 湖北工业大学.
[6]  杨昱梅, 李婧(2015). 聚类分析算法在大学生心理健康分析中的应用研究. 中国教育学刊, (S1), 3.
[7]  赵婧, 邵雄凯, 刘建舟, 等(2019). 文本分类中一种特征选择方法研究. 计算机应用研究, 36(8), 2261-2265.
[8]  Canby, N. K., Cameron, I. M., Calhoun, A. T. et al. (2015). A Brief Mindfulness Intervention for Healthy College Students and Its Effects on Psychological Distress, Self-Control, Meta-Mood, and Subjective Vitality. Mindfulness, 6, 1071-1081.
https://doi.org/10.1007/s12671-014-0356-5
[9]  Myers, B., Bantjes, J., Lochner, C. et al. (2021). Maltreatment during Childhood and Risk for Common Mental Disorders among First Year University Students in South Africa. Social Psychiatry and Psychiatric Epidemiology, 56, 1175-1187.
https://doi.org/10.1007/s00127-020-01992-9

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133