全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于硫化镉的镍基光催化产氢助催化剂的研究进展
Research Progress of Nickel-Based Photocatalytic Hydrogen Production Cocatalysts Based on Cadmium Sulfide

DOI: 10.12677/OJNS.2022.103031, PP. 246-253

Keywords: 镍,助催化剂,硫化镉,光催化,产氢
Nickel
, Cocatalyst, Cadmium Sulfide, Photocatalysis, Hydrogen Evolution

Full-Text   Cite this paper   Add to My Lib

Abstract:

硫化镉(CdS)因其具有良好的可见光响应能力和合适的导带位置,已被广泛应用于光催化产氢研究中。然而,单一CdS材料存在载流子复合较快及表面缺乏产氢活性位点等问题,极大地限制了其应用。在CdS表面负载助催化剂能够改善其表面的光生载流子的迁移行为,从而提升其光催化活性。在众多助催化剂中,过渡金属镍及化合物由于低成本、易合成且具有较好的析氢能力等特点而备受关注。本文主要介绍了基于CdS设计和制备的镍基光催化产氢助催化剂,阐述了其对CdS产氢活性的提升机制,最后对镍基助催化剂的发展方向进行了展望。
Cadmium sulfide (CdS) has been widely used in photocatalytic hydrogen production due to its excellent visible light response and suitable conduction band position. CdS has some disadvantages such as rapid carrier recombination and insufficient hydrogen-producing active sites on the surface, which largely limits its application in photocatalysis. Loading the cocatalyst on the surface of CdS is an effective method to improve the migration behavior of photogenerated carriers on the surface, which can eventually enhance its photocatalytic activity. The transition metal nickel and its compounds acting as cocatalyst have received intensive attention because of their low cost, facile preparation and high performance in hydrogen evolution reaction. This review mainly introduces the design and preparation of nickel-based photocatalytic hydrogen production cocatalyst based on CdS, and expounds its mechanism of improving the hydrogen production activity of CdS. Finally, the development direction of Ni-based cocatalysts is prospected.

References

[1]  Ganguly, P., Harb, M., Cao, Z., Cavallo, L., Breen, A., Dervin, S., et al. (2019) 2D Nanomaterials for Photocatalytic Hydrogen Production. ACS Energy Letters, 4, 1687-1709.
https://doi.org/10.1021/acsenergylett.9b00940
[2]  Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38.
https://doi.org/10.1038/238037a0
[3]  Yan, M., Li, G., Guo, C., Guo, W., Ding, D., Zhang, S., et al. (2016) Wo3-X Sensitized TiO2 Spheres with Full-Spec- trum-Driven Pho-tocatalytic Activities from UV to near Infrared. Nanoscale, 8, 17828-17835.
https://doi.org/10.1039/C6NR06767K
[4]  Zhang, T.X., Meng, F.L., Cheng, Y., Dewangan, N., Ho, G.W. and Kawi, S. (2021) Z-Scheme Transition Metal Bridge of Co9S8/Cd/CdS Tubular Heterostructure for Enhanced Photocata-lytic Hydrogen Evolution. Applied Catalysis B-Environmental, 286, Article ID: 119853.
https://doi.org/10.1016/j.apcatb.2020.119853
[5]  Yang, J., Wang, D., Han, H. and Li, C. (2013) Roles of Cocata-lysts in Photocatalysis and Photoelectrocatalysis. Accounts of Chemical Research, 46, 1900-1909.
https://doi.org/10.1021/ar300227e
[6]  Guo, J., Liang, Y., Liu, L., Hu, J., Wang, H., An, W., et al. (2020) No-ble-Metal-Free CdS/Ni-MOF Composites with Highly Efficient Charge Separation for Photocatalytic H2 Evolution. Ap-plied Surface Science, 522, Article ID: 146356.
https://doi.org/10.1016/j.apsusc.2020.146356
[7]  Gao, D., Xu, J., Chen, F., Wang, P. and Yu, H. (2022) Unsatu-rated Selenium-Enriched MoSe2+x Amorphous Nanoclusters: One-Step Photoinduced Co-Reduction Route and Its Boosted Photocatalytic H2-Evolution Activity for TiO2. Applied Catalysis B: Environmental, 305, Article ID: 121053.
https://doi.org/10.1016/j.apcatb.2021.121053
[8]  Shen, P.C., Zhao, S., Su, D., Li, Y. and Orlov, A. (2012) Out-standing Activity of Sub-Nm Au Clusters for Photocatalytic Hydrogen Production. Applied Catalysis B-Environmental, 126, 153-160.
https://doi.org/10.1016/j.apcatb.2012.07.021
[9]  Xu, J., Yang, W.M., Huang, S.J., Yin, H., Zhang, H., Radjeno-vic, P., et al. (2018) CdS Core-Au Plasmonic Satellites Nanostructure Enhanced Photocatalytic Hydrogen Evolution Re-action. Nano Energy, 49, 363-371.
https://doi.org/10.1016/j.nanoen.2018.04.048
[10]  Li, W., Chu, X., Wang, F., Dang, Y., Liu, X., Ma, T., et al. (2022) Pd Single-Atom Decorated CdS Nanocatalyst for Highly Efficient Overall Water Splitting under Simulated Solar Light. Applied Catalysis B: Environmental, 304, Article ID: 121000.
https://doi.org/10.1016/j.apcatb.2021.121000
[11]  Zhang, S., Liang, M. and Song, L. (2019) Synthesis of Pd7P3/CdS with High Hydrogen Production Activity in Water Splitting and Enhancement Mechanism under Visible Light Radiation. Materials Chemistry and Physics, 229, 286-293.
https://doi.org/10.1016/j.matchemphys.2019.02.071
[12]  Luo, M., Lu, P., Yao, W., Huang, C., Xu, Q., Wu, Q., et al. (2016) Shape and Composition Effects on Photocatalytic Hydrogen Production for Pt-Pd Alloy Cocatalysts. ACS Ap-plied Materials & Interfaces, 8, 20667-20674.
https://doi.org/10.1021/acsami.6b04388
[13]  Zhang, J., Zhao, Q., Zhang, J.X., Shi, Y., Huang, C.P., Xia, L.G., et al. (2020) Highly Active FexCo1-xP Cocatalysts Modified CdS for Photocatalytic Hydrogen Production. International Journal of Hydrogen Energy, 45, 22722-22731.
https://doi.org/10.1016/j.ijhydene.2020.06.090
[14]  Irfan, R.M., Tahir, M.H., Nadeem, M., Maqsood, M., Bashir, T., Iqbal, S., et al. (2020) Fe3C/CdS as Noble-Metal-Free Composite Photocatalyst for Highly Enhanced Photocatalytic H2 Production under Visible Light. Applied Catalysis A: General, 603, Article ID: 117768.
https://doi.org/10.1016/j.apcata.2020.117768
[15]  Liang, Z., Yang, C., Lu, J. and Dong, X. (2021) Ultrathin Fe2P Nanosheet Co-Catalyst CdS Nanorod: The Promising Photocatalyst with Ultrahigh Photocatalytic H2 Production Activity. Applied Surface Science, 566, Article ID: 150732.
https://doi.org/10.1016/j.apsusc.2021.150732
[16]  Zhao, Y., Lu, Y., Chen, L., Wei, X., Zhu, J. and Zheng, Y. (2020) Redox Dual-Cocatalyst-Modified CdS Double- Heterojunction Photocatalysts for Efficient Hydrogen Production. ACS Applied Materials & Interfaces, 12, 46073- 46083.
https://doi.org/10.1021/acsami.0c12790
[17]  Chen, W., Wang, Y.H., Liu, M., Gao, L., Mao, L.Q., Fan, Z.Y., et al. (2018) In Situ Photodeposition of Cobalt on CdS Nanorod for Promoting Photocatalytic Hydrogen Production under Visible Light Irradiation. Applied Surface Science, 444, 485-490.
https://doi.org/10.1016/j.apsusc.2018.03.068
[18]  Kumar, D.P., Choi, J., Hong, S., Reddy, D.A., Lee, S. and Kim, T.K. (2016) Rational Synthesis of Metal-Organic Framework-Derived Noble Metal-Free Nickel Phosphide Nanoparticles as a Highly Efficient Cocatalyst for Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry & En-gineering, 4, 7158-7166.
https://doi.org/10.1021/acssuschemeng.6b02032
[19]  Xu, J.X., Qi, Y.H. and Wang, L. (2019) In Situ Derived Ni2P/Ni Encapsulated in Carbon/g-C3N4 Hybrids from Metal-Organic Frameworks/g-C3N4 for Efficient Photocatalytic Hydrogen Evolution. Applied Catalysis B: Environmental, 246, 72-81.
https://doi.org/10.1016/j.apcatb.2019.01.045
[20]  Vamvasakis, I., Papadas, I.T., Tzanoudakis, T., Drivas, C., Choulis, S.A., Kennou, S., et al. (2018) Visible-Light Photocatalytic H2 Production Activity of Β-Ni(OH)2-Modified CdS Mesoporous Nanoheterojunction Networks. ACS Catalysis, 8, 8726-8738.
https://doi.org/10.1021/acscatal.8b01830
[21]  Li, Q., Guo, B., Yu, J., Ran, J., Zhang, B., Yan, H., et al. (2011) Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets. Journal of the American Chemical Society, 133, 10878-10884.
https://doi.org/10.1021/ja2025454
[22]  Liu, J., Liu, Y., Liu, N., Han, Y., Zhang, X., Huang, H., et al. (2015) Water Splitting. Metal-Free Efficient Photocatalyst for Stable Visible Water Splitting via a Two-Electron Pathway. Science, 347, 970-974.
https://doi.org/10.1126/science.aaa3145
[23]  Gogoi, D., Koyani, R., Golder, A.K. and Peela, N.R. (2020) Enhanced Photocatalytic Hydrogen Evolution Using Green Carbon Quantum Dots Modified 1-D CdS Nanowires under Visible Light Irradiation. Solar Energy, 208, 966-977.
https://doi.org/10.1016/j.solener.2020.08.061
[24]  Shen, Z., Yuan, Y., Pei, L., Yu, Z. and Zou, Z. (2020) Black Phosphorus Photocatalysts for Photocatalytic H2 Generation: A Review. Chemical Engineering Journal, 386, Article ID: 123997.
https://doi.org/10.1016/j.cej.2019.123997
[25]  Liu, F., Wang, Z., Weng, Y., Shi, R., Ma, W. and Chen, Y. (2021) Black Phosphorus Quantum Dots Modified CdS Nanowires with Efficient Charge Separation for Enhanced Photocata-lytic H2 Evolution. ChemCatChem, 13, 1355-1361.
https://doi.org/10.1002/cctc.202001847
[26]  Zeng, P., Liu, J.Y., Wang, J.M. and Peng, T.Y. (2019) Fabrication of Ni Nanoclusters-Modified Brookite TiO2 Quasi Nanocubes and Its Photocatalytic Hydrogen Evolution Performance. Chinese Journal of Chemical Physics, 32, 625-634.
https://doi.org/10.1063/1674-0068/cjcp1812287
[27]  Wang, H., Chen, W., Zhang, J., Huang, C. and Mao, L. (2015) Nickel Nanoparticles Modified CdS—A Potential Photocatalyst for Hydrogen Production through Water Splitting under Visible Light Irradiation. International Journal of Hydrogen Energy, 40, 340-345.
https://doi.org/10.1016/j.ijhydene.2014.11.005
[28]  Zhang, H.Z., Dong, Y.M., Zhao, S., Wang, G.L., Jiang, P.P., Zhong, J., et al. (2020) Photochemical Preparation of Atomically Dispersed Nickel on Cadmium Sulfide for Superior Photocatalytic Hydrogen Evolution. Applied Catalysis B-Environmental, 261, Article ID: 118233.
https://doi.org/10.1016/j.apcatb.2019.118233
[29]  Zhao, Q., Sun, J., Li, S., Huang, C., Yao, W., Chen, W., et al. (2018) Single Nickel Atoms Anchored on Nitrogen-Doped Graphene as a Highly Active Cocatalyst for Photocatalytic H2 Evolution. ACS Catalysis, 8, 11863-11874.
https://doi.org/10.1021/acscatal.8b03737
[30]  Mao, L.Q., Ba, Q.Q., Jia, X.J., Liu, S., Liu, H., Zhang, J., et al. (2019) Ultrathin Ni(OH)2 Nanosheets: A New Strategy for Cocatalyst Design on CdS Surfaces for Photocatalytic Hydrogen Generation. RSC Advances, 9, 1260-1269.
https://doi.org/10.1039/C8RA07307D
[31]  Zhang, H.Z., Dong, Y.M., Li, D.D., Wang, G.L., Leng, Y., Zhang, P.B., et al. (2021) Photochemical Synthesis of Ni-Ni(OH)2 Synergistic Cocatalysts Hybridized with CdS Nanorods for Efficient Photocatalytic Hydrogen Evolution. Flatchem, 26, Article ID: 100232.
https://doi.org/10.1016/j.flatc.2021.100232
[32]  Zhuang, H., Cai, Z., Xu, W., Zhang, X., Huang, M. and Wang, X. (2019) Constructing 1D CdS Nanorod Composites with High Photocatalytic Hydrogen Production by Introducing the Ni-Based Cocatalysts. Catalysis Communications, 120, 51-54.
https://doi.org/10.1016/j.catcom.2018.11.010
[33]  Wang, H., Li, Y., Liu, Z., Liu, J. and Yang, R. (2021) Hydroxy Acid-Assisted Synthesis of Highly Dispersed Ni-NiS on CdS as Effective Photocatalyst for Hydrogen Evolution. Catal-ysis Letters, 151, 1707-1719.
https://doi.org/10.1007/s10562-020-03408-4
[34]  Li, C., Naghadeh, S.B., Guo, L., Xu, K., Zhang, J.Z. and Wang, H. (2020) Cellulose as Sacrificial Biomass for Photocatalytic Hydrogen Evolution over One-Dimensional CdS Loaded with NiS2 as a Cocatalyst. ChemistrySelect, 5, 1470-1477.
https://doi.org/10.1002/slct.201904840
[35]  He, B., Bie, C., Fei, X., Cheng, B., Yu, J., Ho, W., et al. (2021) Enhancement in the Photocatalytic H2 Production Activity of CdS Nrs by Ag2S and NiS Dual Cocatalysts. Applied Catalysis B: Environmental, 288, Article ID: 119994.
https://doi.org/10.1016/j.apcatb.2021.119994
[36]  Ke, X., Dai, K., Zhu, G., Zhang, J. and Liang, C. (2019) In situ Photochemical Synthesis Noble-Metal-Free NiS on CdS-Diethylenetriamine Nanosheets for Boosting Photocatalytic H2 Production Activity. Applied Surface Science, 481, 669-677.
https://doi.org/10.1016/j.apsusc.2019.03.171
[37]  Guan, H.J., Zhang, S.S., Cai, X., Gao, Q.Z., Yu, X.Y., Zhou, X.S., et al. (2019) CdS@Ni3S2 Core-Shell Nanorod Arrays on Nickel Foam: A Multifunctional Catalyst for Efficient Electrochemical Catalytic, Photoelectrochemical and Photocatalytic H2 Production Reaction. Journal of Materials Chem-istry A, 7, 2560-2574.
https://doi.org/10.1039/C8TA08837C
[38]  Yuan, X., Shen, D., Zhang, Q., Yang, G., Zhang, B., Li, Y., et al. (2020) Highly Exposed (001) Facets Ni(OH)2 Induced Formation of Nickle Phosphide over Cadmium Sulfide Nanorods for Efficient Photocatalytic Hydrogen Evolution. International Journal of Hydrogen Energy, 45, 9397-9407.
https://doi.org/10.1016/j.ijhydene.2020.01.148
[39]  Hu, C., Lv, C., Liu, S., Shi, Y., Song, J., Zhang, Z., et al. (2020) Nickel Phosphide Electrocatalysts for Hydrogen Evolution Reaction. Catalysts, 10, 188.
https://doi.org/10.3390/catal10020188
[40]  Ray, A., Sultana, S., Paramanik, L. and Parida, K.M. (2020) Recent Advances in Phase, Size, and Morphology-Oriented Nanostructured Nickel Phosphide for Overall Water Splitting. Journal of Materials Chemistry A, 8, 19196-19245.
https://doi.org/10.1039/D0TA05797E
[41]  Wang, J.F., Wang, P.F., Hou, J., Qian, J., Wang, C. and Ao, Y.H. (2018) In Situ Surface Engineering of Ultrafine Ni2P Nanoparticles on Cadmium Sulfide for Robust Hydrogen Evolution. Catalysis Science & Technology, 8, 5406-5415.
https://doi.org/10.1039/C8CY00519B
[42]  Sun, Z.J., Zheng, H.F., Li, J.S. and Du, P.W. (2015) Extraordinarily Efficient Photocatalytic Hydrogen Evolution in Water Using Semiconductor Nanorods Integrated with Crystalline Ni2P Cocatalysts. Energy & Environmental Science, 8, 2668-2676.
https://doi.org/10.1039/C5EE01310K
[43]  Irfan, R.M., Tahir, M.H., Khan, S.A., Shaheen, M.A., Ahmed, G. and Iqbal, S. (2019) Enhanced Photocatalytic H2 Production under Visible Light on Composite Photocatalyst (CdS/Nise Nanorods) Synthesized in Aqueous Solution. Journal of Colloid and Interface Science, 557, 1-9.
https://doi.org/10.1016/j.jcis.2019.09.014
[44]  Chen, Z.H., Gong, H.S., Liu, Q.W., Song, M.X. and Huang, C.J. (2019) NiSe2 Nanoparticles Grown in Situ on CdS Nanorods for Enhanced Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry & Engineering, 7, 16720- 16728.
https://doi.org/10.1021/acssuschemeng.9b04173
[45]  Wang, G. and Jin, Z. (2019) Function of NiSe2 over CdS Nanorods for Enhancement of Photocatalytic Hydrogen Production—From Preparation to Mechanism. Applied Surface Science, 467, 1239-1248.
https://doi.org/10.1016/j.apsusc.2018.10.239
[46]  Du, S., Li, C., Lin, X., Xu, W., Huang, X., Xu, H., et al. (2019) NiSe2 as Co-Catalyst with CdS: Nanocomposites for High-Performance Photodriven Hydrogen Evolution under Visi-ble-Light Irradiation. ChemPlusChem, 84, 999-1010.
https://doi.org/10.1002/cplu.201900380
[47]  Sun, Z., Chen, H., Zhang, L., Lu, D. and Du, P. (2016) Enhanced Photocatalytic H2 Production on Cadmium Sulfide Photocatalysts Using Nickel Nitride as a Novel Cocatalyst. Journal of Materials Chemistry A, 4, 13289-13295.
https://doi.org/10.1039/C6TA04696G

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133