|
基于XGBoost的双目标零件类别划分技术与优化
|
Abstract:
针对目前复杂产品装配对象内部零件结构层次识别困难的情形,以提高装配工艺文件编制的合理性、准确性以及其效率为目标。研究基于贝叶斯优化的XGBoost算法,以五套不同型号的生物器皿消毒机三维模型与装配工艺卡作为工艺数据源,对零件进行了关于结构类型和功能类型的双目标多类别的自动识别。得到结构类型和功能类型识别的准确率分别可达到96%和90%。实现自动识别并划分零件类型,丰富了装配体内部信息。
In view of the difficulty in identifying the internal part structure hierarchy of complex product assembly object, the goal is to improve the rationality, accuracy and efficiency of assembly process documentation. The XGBoost algorithm based on Bayesian optimization algorithm is studied. Five sets of three-dimensional models and assembly process cards of different types of biological utensils disinfection machines are used as the process data source to automatically identify the structure type and function type of parts. The recognition accuracy of structure type and function type can reach 96% and 90% respectively. Automatic identification and classification of parts are realized, which enriches the internal information of assembly.
[1] | 王磊. 基于canny边缘检测的工业零件分类识别[J]. 电子设计工程, 2019, 27(21): 190-193. |
[2] | 王晓初, 邱杰豪, 欧阳祥波, 简川霞, 范彬祥. 基于机器视觉的轴承盖外形轮廓分类方法[J]. 包装工程, 2020, 41(23): 217-222. |
[3] | Pechenin, V.A., Bolotov, M.A. and Yu Pechenina, E. (2020) Neural Network Model of Machine Parts Classification by Optical Scanning Results. Journal of Physics: Conference Series, 1515, Article ID: 052008.
https://doi.org/10.1088/1742-6596/1515/5/052008 |
[4] | 司小婷. 基于视觉的零件特征识别与分类方法研究与实现[D]: [硕士学位论文]. 沈阳: 中国科学院研究生院(沈阳计算技术研究所), 2016. |
[5] | Joshi, K.D., Chauhan, V. and Surgenor, B. (2020) A Flexible Machine Vision System for Small Part Inspection Based on a Hybrid SVM/ANN Approach. Journal of Intelligent Manufacturing, 31, 103-125.
https://doi.org/10.1007/s10845-018-1438-3 |
[6] | Krüger, J., et al. (2019) Deep Learning for Part Identification Based on Inherent Features. CIRP Annals—Manufacturing Technology, 68, 9-12. https://doi.org/10.1016/j.cirp.2019.04.095 |
[7] | Feng, Y.Q. and Li, B. (2010) Solid Model Reconstruction and Fea-ture Recognition for Mechanical Part Based on Slice Image. Proceeding of International Conference on Computer Sci-ence & Education, ICCSE 2010, Hefei, 24-27 August 2010, 221-224. https://doi.org/10.1109/ICCSE.2010.5593651 |
[8] | 吴炜. 烟草机械产品零件分类编码系统研究与开发[D]: [硕士学位论文]. 上海: 上海交通大学, 2012. |
[9] | 许裕栗, 杨晶, 李柠, 甘中学. XGBoost算法在区域用电预测中的应用[J]. 自动化仪表, 2018, 39(7): 1-5. |
[10] | 付宇. 基于XGBoost模型的贵州省野外真菌菌种预测系统及可视化展示[D]: [硕士学位论文]. 北京: 北京林业大学, 2020. |
[11] | 孙俊佚雄. 基于大数据的智能家电故障检测和诊断模型研究[D]: [硕士学位论文]. 桂林: 桂林电子科技大学, 2020. |
[12] | Awojoyogbe, O.B. (2003) A Mathematical Model of Bloch NMR Equations for Quantitative Analysis of Blood Flow in Blood Vessels of Changing Cross-Section-PART II. Physica A Statistical Mechanics & Its Applications, 323, 534-550. https://doi.org/10.1016/S0378-4371(02)02025-3 |
[13] | 李叶紫, 王振友, 周怡璐, 韩晓卓. 基于贝叶斯最优化的XGBoost算法的改进及应用[J]. 广东工业大学学报, 2018, 35(1): 23-28 |
[14] | Zhang, B., Peng, M., Cheng, S., et al. (2020) A Decision-Making Method Based on Bayesian Optimization Algorithm for Small Modular Reactor. Kerntechnik, 85, 109-121. https://doi.org/10.1515/kern-2020-850208 |
[15] | 邓帅. 基于改进贝叶斯优化算法CNN超参数优化方法[J]. 计算机应用研究, 2019, 36(7): 1984-1987. |