|
人群仿真模型综述
|
Abstract:
随着计算机技术水平的飞跃发展和人们对动画特效的迫切需求,人群建模引发了空前的研究热潮。人群运动建模和仿真已成为计算机图形学,安全科学和人工智能的研究热点。本文从人群运动仿真的意义出发,回顾了人群运动仿真的传统研究方法,并对常用传统模型的基本原理、优缺点以及相关应用进行了介绍。讨论了现阶段人群运动仿真的研究热点,包括现今极为火热的基于大数据驱动的新型仿真模型以及融入情绪传染的仿真方法。分析了人群运动仿真领域现阶段存在的不足,重点指出了当今对于情绪研究只重视情绪的感染方式而忽略了情绪差异下行人行为异质性的问题。最后,对人群仿真未来的研究方向进行了展望。
With the rapid development of computer technology and the urgent need for animation effects, crowd modeling research has given rise to an unprecedented tide of research. Crowd motion modeling and simulation have become a hot research topic in computer graphics, security science and artificial intelligence. This paper reviews the traditional research methods of crowd motion simulation from the significance of crowd motion simulation and introduces the basic principles, advantages and disadvantages of commonly used traditional models and related applications. The current research hotspots of crowd motion simulation are discussed, including the new simulation models based on big data and simulation methods incorporating emotional contagion, which are extremely hot nowadays. The shortcomings in the field of crowd motion simulation are analyzed, highlighting the fact that today’s research on emotion focuses only on emotional contagion and ignores the heterogeneity of pedestrian behavior in response to emotional differences. Finally, the future research directions of crowd simulation are prospected.
[1] | Reynolds, C.W. (1987) Flocks, Herds and Schools: A Distributed Behavioral Model. Proceedings of the 14th annual Conference on Computer Graphics and Interactive Techniques, Anaheim, 27-31 July 1987, 25-34.
https://doi.org/10.1145/37401.37406 |
[2] | Hughes, R.L. (2002) A Continuum Theory for the Flow of Pedestrians. Transportation Research Part B: Methodological, 36, 507-535. https://doi.org/10.1016/S0191-2615(01)00015-7 |
[3] | Jiang, H., Xu, W., Mao, T., Li, C., Xia, S. and Wang, Z. (2010) Continuum Crowd Simulation in Complex Environments. Computers & Graphics, 34, 537-544. https://doi.org/10.1016/j.cag.2010.05.013 |
[4] | Sewall, J., Wilkie, D., Merrell, P. and Lin, M.C. (2010) Continuum Traffic Simulation. Computer Graphics Forum, 29, 439-448. https://doi.org/10.1111/j.1467-8659.2009.01613.x |
[5] | Golas, A., Narain, R. and Lin, M.C. (2014) Continuum Modeling of Crowd Turbulence. Physical Review E, 90, Article ID: 042816. https://doi.org/10.1103/PhysRevE.90.042816 |
[6] | O?uz, O., Akayd?n, A., Y?lmaz, T. and Güdükbay, U. (2010) Emergency Crowd Simulation for Outdoor Environments. Computers & Graphics, 34, 136-144. https://doi.org/10.1016/j.cag.2009.12.004 |
[7] | Guy, S.J., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., et al. (2009) Clearpath: Highly Parallel Collision Avoidance for multi-agent simulation. Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, New Orleans, 1-2 August 2009, 177-187. https://doi.org/10.1145/1599470.1599494 |
[8] | Helbing, D., Farkas, I. and Vicsek, T. (2000) Simulating Dynamical Features of Escape Panic. Nature, 407, 487-490.
https://doi.org/10.1038/35035023 |
[9] | Hughes, R.L. (2000) The Flow of Large Crowds of Pedestrians. Mathematics and Computers in Simulation, 53, 367-370. https://doi.org/10.1016/S0378-4754(00)00228-7 |
[10] | Chenney, S. (2004) Flowtiles. The 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Grenoble, 27-29 August 2004, 233-242. https://doi.org/10.1145/1028523.1028553 |
[11] | Treuille, A., Cooper, S. and Popovi?, Z. (2006) Continuum Crowds. ACM Transactions on Graphics (TOG), 25, 1160-1168. https://doi.org/10.1145/1141911.1142008 |
[12] | Pelechano, N., Allbeck, J.M. and Badler, N.I. (2007) Controlling Individual Agents in High-Density Crowd Simulation. Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, 2-4 August 2007, 99-108. |
[13] | Saboia, P. and Goldenstein, S. (2012) Crowd Simulation: Applying Mobile Grids to the Social Force Model. The Visual Computer, 28, 1039-1048. https://doi.org/10.1007/s00371-012-0731-y |
[14] | Karamouzas, I., Heil, P., Beek, P. and Overmars, M.H. (2009) A Predictive Collision Avoidance Model for Pedestrian Simulation. 2nd International Workshop on Motion in Games, Zeist, 21-24 November 2009, 41-52.
https://doi.org/10.1007/978-3-642-10347-6_4 |
[15] | Ji, Q., Wang, F. and Zhu, T. (2016) VPBS: A Velocity-Perception-Based SFM Approach for Crowd Simulation. 2016 International Conference on Virtual Reality and Visualization (ICVRV), Hangzhou, 24-26 September 2016, 317-324. https://doi.org/10.1109/ICVRV.2016.59 |
[16] | Khamis, N., Selamat, H., Ismail, F.S., Lutfy, O.F., Haniff, M.F. and Nordin, I.N.A.M. (2020) Optimized Exit Door Locations for a Safer Emergency Evacuation Using Crowd Evacuation Model and Artificial Bee Colony Optimization. Chaos, Solitons & Fractals, 131, Article ID: 109505. https://doi.org/10.1016/j.chaos.2019.109505 |
[17] | Zhang, X. and Zhu, Y. (2021) Simulation of Crowd Motion Based on Boids Flocking Behavior and Social Force Model. Instrumentation, 8, 29-42. |
[18] | Crociani, L. and L?mmel, G. (2016) Multidestination Pedestrian Flows in Equilibrium: A Cellular Automaton-Based Approach. Computer-Aided Civil and Infrastructure Engineering, 31, 432-448. https://doi.org/10.1111/mice.12209 |
[19] | Goldengorin, B., Makarenko, A. and Smelyanec, N. (2006) Some Applications and Prospects of Cellular Automata in Traffic Problems. 7th International Conference on Cellular Automata for Research and Industry, Perpignan, 20-23 September 2006, 532-537. https://doi.org/10.1007/11861201_61 |
[20] | W?s, J., Porzycki, J., Luba?, R., Miller, J. and Bazior, G. (2016) Agent-based Approach and Cellular Automata—A Promising Perspective in Crowd Dynamics Modeling. Acta Physica Polonica B: Proceedings Supplement, 9, 133-144. https://doi.org/10.5506/APhysPolBSupp.9.133 |
[21] | 吴凡, 李春忠, 林丽芳, 朱家明. 一种基于元胞自动机的人群疏散仿真算法研究[J]. 延边大学学报: 自然科学版, 2019, 45(4): 329-334. |
[22] | Okazaki, S. and Matsushita, S. (1993) A Study of Simulation Model for Pedestrian Movement with Evacuation and Queuing. Proceedings of the International Conference on Engineering for Crowd Safety, London, 17-18 March 1993, 271. |
[23] | Karamouzas, I., Sohre, N., Narain, R. and Guy, S.J. (2017) Implicit Crowds: Optimization Integrator for Robust Crowd Simulation. ACM Transactions on Graphics (TOG), 36, Article No. 136. https://doi.org/10.1145/3072959.3073705 |
[24] | Weiss, T., Litteneker, A., Jiang, C. and Terzopoulos, D. (2017) Position-Based Multi-Agent Dynamics for Real-Time Crowd Simulation. Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Los Angeles, 28-30 July 2017, Article No. 27. https://doi.org/10.1145/3099564.3108160 |
[25] | Lerner, A., Chrysanthou, Y. and Lischinski, D. (2007) Crowds by Example. Computer Graphics Forum, 26, 655-664.
https://doi.org/10.1111/j.1467-8659.2007.01089.x |
[26] | Lerner, A., Fitusi, E., Chrysanthou, Y. and Cohen-Or, D. (2009) Fitting Behaviors to Pedestrian Simulations. Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, New Orleans, 1-2 August 2009, 199-208. https://doi.org/10.1145/1599470.1599496 |
[27] | Zhang, W., Wang, K., Qu, H., Zhao, J. and Wang, F.-Y. (2017) Scene-Specific Pedestrian Detection Based on Parallel Vision. arXiv preprint arXiv:1712.08745. |
[28] | Liu, Z., Jin, W., Huang, P. and Chai, Y. (2013) An Emotion Contagion Simulation Model for Crowd Events. Journal of Computer Research and Development, 50, 2578. |
[29] | Fu, L., Song, W., Lv, W. and Lo, S. (2014) Simulation of Emotional Contagion Using Modified SIR Model: A Cellular Automaton Approach. Physica A: Statistical Mechanics and its Applications, 405, 380-391.
https://doi.org/10.1016/j.physa.2014.03.043 |
[30] | Cao, M., Zhang, G., Wang, M., Lu, D. and Liu, H. (2017) A Method of Emotion Contagion for Crowd Evacuation. Physica A: Statistical Mechanics and Its Applications, 483, 250-258. https://doi.org/10.1016/j.physa.2017.04.137 |
[31] | Liu, T., Liu, Z. and Chai, Y. (2016) Method for Crowd Trampling and Crushing Simulation Based on Psychological Model. Journal of System Simulation, 28, 2448-2454. |
[32] | Xu, M., Xie, X., Lyu, P., Niu, J., Wang, H., Li, C., et al. (2019) Crowd Behavior Simulation with Emotional Contagion in Unexpected Multihazard Situations. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51, 1567-1581.
https://doi.org/10.1109/TSMC.2019.2899047 |
[33] | Xu, T., Shi, D., Chen, J., Li, T., Lin, P. and Ma, J. (2020) Dynamics of Emotional Contagion in Dense Pedestrian Crowds. Physics Letters A, 384, Article ID: 126080. https://doi.org/10.1016/j.physleta.2019.126080 |
[34] | Mao, Y., Fan, Z., Zhao, J., Zhang, Q. and He, W. (2019) An Emotional Contagion Based Simulation for Emergency Evacuation Peer Behavior Decision. Simulation Modelling Practice and Theory, 96, Article ID: 101936.
https://doi.org/10.1016/j.simpat.2019.101936 |
[35] | Tsai, J., Bowring, E., Marsella, S. and Tambe, M. (2013) Empirical Evaluation of Computational Fear Contagion Models in Crowd Dispersions. Autonomous Agents and Multi-Agent Systems, 27, 200-217.
https://doi.org/10.1007/s10458-013-9220-6 |