|
人工智能在老年黄斑病变中的应用综述性研究及基于医学影像的老年黄斑变性病症量化分析
|
Abstract:
本文基于文献综述,对人工智能技术在老年黄斑变性的应用、发展和研究分类进行了系统的研究,同时对老年黄斑病变的结构及病症(Biomarker)进行量化分析。对该领域的挑战与解决方案进行了剖析。提出将基于可解释性算法的老年黄斑变性诊断、早筛、眼底结构预测、病症及生活行为特征预测及可视化,以及治疗效果预测相关任务中的应用,作为未来潜在研究方向。因此,该文章对未来相关领域研究具有很强的临床指导意义和科学理论价值。
Based on literature review, this paper delivers a systematical study on the application, development and research focus of artificial intelligence (AI) technology to age-related macular degeneration (AMD). A quantitative analysis on the biomarker of AMD based on medical images is performed. Challenges and solutions are discussed. The application of interpretable algorithms in the tasks related to AMD diagnosis, early screening, and prediction of the treatment effect is proposed as a potential research direction in the future. Therefore, this article exhibits clinical guiding significance and scientific theoretical value for future research in related fields.
[1] | Li, M., Wang, G., Xia, H., Tang, X., Feng, Z., Yao, Y., et al. (2019) Clinical Evaluation of Artificial Intelligence System Based on Fundus Photograph in Diabetic Retinopathy Screening. Chinese Journal of Experimental Ophthalmology, 37, 663-668. |
[2] | Lin, C., Song, X., Li, L., Li, Y., Jiang, M., Sun, R., et al. (2021) Detection of Active and Inactive Phases of Thyroid-Associated Ophthalmopathy Using Deep Convolutional Neural Network. BMC Ophthalmology, 21, Article No. 39.
https://doi.org/10.1186/s12886-020-01783-5 |
[3] | Kurt, R.A. and Mestanoglu, M. (2021) Ultra-Widefield Imaging in Age-Related Macular Degeneration. Journal of Retina-Vitreous, 30, 99-103. https://doi.org/10.37845/ret.vit.2021.30.19 |
[4] | Dai, L., Wu, L., Li, H., Cai, C., Wu, Q., Kong, H., et al. (2021) A Deep Learning System for Detecting Diabetic Retinopathy across the Disease Spectrum. Nature Communications, 12, Article No. 3242.
https://doi.org/10.1038/s41467-021-23458-5 |
[5] | Han, W. (2021) A Review of Artificial Intelligence in Ophthalmology Field—Taking the Fundus Diagnosis Based on OCT Images as an Example. Artificial Intelligence and Robotics Research, 10, 306-312.
https://doi.org/10.12677/AIRR.2021.104031 |
[6] | Schmidt-Erfurth, U., Bogunovic, H., Sadeghipour, A., Schlegl, T., Langs, G., Gerendas, B.S., et al. (2018) Machine Learning to Analyze the Prognostic Value of Current Imaging Biomarkers in Neovascular Age-Related Macular Degeneration. Ophthalmology Retina, 2, 24-30. https://doi.org/10.1016/j.oret.2017.03.015 |
[7] | Aslam, T.M., Zaki, H.R., Mahmood, S., Ali, Z.C., Ahmad, N.A., Thorell, M.R., et al. (2018) Use of a Neural Net to Model the Impact of Optical Coherence Tomography Abnormalities on Vision in Age-related Macular Degeneration. American Journal of Ophthalmology, 185, 94-100. https://doi.org/10.1016/j.ajo.2017.10.015 |
[8] | Sumaroka, A., Cideciyan, A.V., Sheplock, R., Wu, V., Kohl, S., Wissinger, B., et al. (2020) Foveal Therapy in Blue Cone Monochromacy: Predictions of Visual Potential from Artificial Intelligence. Frontiers in Neuroscience, 14, Article No. 800. https://doi.org/10.3389/fnins.2020.00800 |
[9] | Rohm, M., Tresp, V., Müller, M., Kern, C., Manakov, I., Weiss, M., et al. (2018) Predicting Visual Acuity by Using Machine Learning in Patients Treated for Neovascular Age-Related Macular Degeneration. Ophthalmology, 125, 1028-1036. https://doi.org/10.1016/j.ophtha.2017.12.034 |
[10] | Fraccaro, P., Nicolo, M., Bonetto, M., Giacomini, M., Weller, P., Traverso, C.E., et al. (2015) Combining Macula Clinical Signs and Patient Characteristics for Age-Related Macular Degeneration Diagnosis: A Machine Learning Approach. BMC Ophthalmology, 15, Article No. 10. https://doi.org/10.1186/1471-2415-15-10 |
[11] | Pead, E., Megaw, R., Cameron, J., Fleming, A., Dhillon, B., Trucco, E., et al. (2019) Automated Detection of Age-Related Macular Degeneration in Color Fundus Photography: A Systematic Review. Survey of Ophthalmology, 64, 498-511. https://doi.org/10.1016/j.survophthal.2019.02.003 |
[12] | Korot, E., Wagner, S.K., Faes, L., et al. (2020) Will AI Replace Ophthalmologists? Translational Vision Science & Technology, 9, 2. https://doi.org/10.1167/tvst.9.2.2 |
[13] | Ruamviboonsuk, P., Cheung, C.Y., Zhang, X., Raman, R., Park, S.J. and Ting, D.S.W. (2020) Artificial Intelligence in Ophthalmology: Evolutions in Asia. The Asia-Pacific Journal of Ophthalmology, 9, 78-84.
https://doi.org/10.1097/01.APO.0000656980.41190.bf |
[14] | Keel, S., Lee, P.Y., Scheetz, J., Li, Z., Kotowicz, M.A., MacIsaac, R.J., et al. (2018) Feasibility and Patient Acceptability of a Novel Artificial Intelligence-Based Screening Model for Diabetic Retinopathy at Endocrinology Outpatient Services: A Pilot Study. Scientific Reports, 8, Article No. 4330. https://doi.org/10.1038/s41598-018-22612-2 |
[15] | Beede, E., Baylor, E., Hersch, F., Iurchenko, A., Wilcox, L., Ruamviboonsuk, P., et al. (2020) A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, 25-30 April 2020, 1-12.
https://doi.org/10.1145/3313831.3376718 |
[16] | Faes, L., Liu, X., Wagner, S.K., Fu, D.J., Balaskas, K., et al. (2020) A Clinician’s Guide to Artificial Intelligence: How to Critically Appraise Machine Learning Studies. Translational Vision Science & Technology, 9, 7.
https://doi.org/10.1167/tvst.9.2.7 |
[17] | Vollmer, S., Mateen, B.A., Bohner, G., Király, F.J., Ghani, R., Jonsson, P., et al. (2018) Machine Learning and AI Research for Patient Benefit: 20 Critical Questions on Transparency, Replicability, Ethics and Effectiveness. British Medical Journal, 368, l6927. |
[18] | Verghese, A., Shah, N.H. and Harrington, R.A. (2018) What This Computer Needs Is a Physician: Humanism and Artificial Intelligence. Journal of the American Medical Association, 319, 19-20.
https://doi.org/10.1001/jama.2017.19198 |
[19] | Keel, S., et al. (2019) Visualizing Deep Learning Models for the Detection of Referable Diabetic Retinopathy and Glaucoma. JAMA Ophthalmology, 137, 288-292. https://doi.org/10.1001/jamaophthalmol.2018.6035 |
[20] | Grassmann, F., Mengelkamp, J., Brandl, C., Harsch, S., et al. (2018) A Deep Learning Algorithm for Prediction of Age-Related Eye Disease Study Severity Scale for Age-Related Macular Degeneration from Color Fundus Photography. Ophthalmology, 125, 1410-1420. https://doi.org/10.1016/j.ophtha.2018.02.037 |
[21] | Simonyan, K., Vedaldi, A. and Zisserman, A. (2013) Deep inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. arXiv: 13126034. |
[22] | Phillips, L., Goh, G. and Hodas, N. (2019) Explanatory Masks for Neural Network Interpretability. arXiv:191106876. |
[23] | Holzinger, A., Langs, G., Denk, H., Zatloukal, K. and Muller, H. (2019) Causability and Explainability of Artificial Intelligence in Medicine. WIREs Data Mining and Knowledge Discovery, 9, e1312. https://doi.org/10.1002/widm.1312 |
[24] | Yang, G., Ye, Q. and Xia, J. (2022) Unbox the Black-Box for the Medical Explainable AI via Multi-Modal and Multi-Centre Data Fusion: A Mini-Review, Two Showcases and beyond. Information Fusion, 77, 29-52.
https://doi.org/10.1016/j.inffus.2021.07.016 |
[25] | Zhao, L.P. and Bolouri, H. (2016) Object-Oriented Regression for Building Predictive Models with High Dimensional Omics Data from Translational Studies. Journal of Biomedical Informatics, 60, 431-445.
https://doi.org/10.1016/j.jbi.2016.03.001 |
[26] | Shrikumar, A., Greenside, P. and Kundaje, A. (2017) Learning Important Features through Propagating Activation Differences. International Conference on Machine Learning, Sydney, 6-11 August 2017, 3145-3153. |
[27] | Putelli, L., Gerevini, A.E., Lavelli, A. and Serina, I. (2019) Applying Self-Interaction Attention for Extracting Drug-Drug Interactions. International Conference of the Italian Association for Artificial Intelligence, Rende, 19-22 November 2019, 445-460. https://doi.org/10.1007/978-3-030-35166-3_32 |
[28] | Chou, Y.L., Moreira, C., Bruza, P., Ouyang, C. and Jorge, J. (2022) Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications. Information Fusion, 81, 59-83.
https://doi.org/10.1016/j.inffus.2021.11.003 |
[29] | Kwon, B.C., Choi, M.J., Kim, J.T., Choi, E., Kim, Y.B., Kwon, S., et al. (2019) RetainVis: Visual Analytics with Interpretable and Interactive Recurrent Neural Networks on Electronic Medical Records. IEEE Transactions on Visualization and Computer Graphics, 25, 299-309. https://doi.org/10.1109/TVCG.2018.2865027 |
[30] | Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. and Torralba, A. (2016) Learning Deep Features for Discriminative Localization. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 27-30 June 2016, 2921-2929. https://doi.org/10.1109/CVPR.2016.319 |
[31] | Lee, H., Yune, S., Mansouri, M., Kim, M., Tajmir, S.H., Guerrier, C.E., et al. (2019) An Explainable Deep-Learning Algorithm for the Detection of Acute Intracranial Haemorrhage from Small Datasets. Nature Biomedical Engineering, 3, 173-182. https://doi.org/10.1038/s41551-018-0324-9 |
[32] | Salahuddin, Z., Woodruff, H.C., Chatterjee, A. and Lambin, P. (2022) Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods. Computers in Biology and Medicine, 140, Article ID: 105111. https://doi.org/10.1016/j.compbiomed.2021.105111 |
[33] | Meldo, A., Utkin, L., Kovalev, M. and Kasimov, E. (2020) The Natural Language Explanation Algorithms for the Lung Cancer Computer-Aided Diagnosis System. Artificial Intelligence in Medicine, 108, Article ID: 101952.
https://doi.org/10.1016/j.artmed.2020.101952 |
[34] | Ma, Y., Chen, X., Zhu, W., Cheng, X., Xiang, D. and Shi, F. (2018) Speckle Noise Reduction in Optical Coherence Tomography Images Based on Edge-Sensitive cGAN. Biomedical Optics Express, 9, 5129-5146.
https://doi.org/10.1364/BOE.9.005129 |
[35] | Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I. and Abbeel, P. (2016) InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets. Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, 5-10 December 2016, 2180-2188. |
[36] | Mukherjee, S., Asnani, H., Lin, E. and Kannan, S. (2019) ClusterGAN: Latent Space Clustering in Generative Adversarial Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 4610-4617.
https://doi.org/10.1609/aaai.v33i01.33014610 |
[37] | Qu, Y., Chen, Y., Huang, J. and Xie, Y. (2019) Enhanced Pix2pix Dehazing Network. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, 15-20 June 2019, 8152-8160.
https://doi.org/10.1109/CVPR.2019.00835 |
[38] | Almahairi, A., Rajeshwar, S., Sordoni, A., Bachman, P. and Courville, A. (2018) Augmented Cyclegan: Learning Many-to-Many Mappings from Unpaired Data. International Conference on Machine Learning, Stockholm, 10-15 July 2018, 195-204. |
[39] | Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J. and Aila, T. (2020) Analyzing and Improving the Image Quality of StyleGAN. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 13-19 June 2020, 8107-8116. https://doi.org/10.1109/CVPR42600.2020.00813 |
[40] | Niu, Y., Gu, L., Zhao, Y. and Lu, F. (2022) Explainable Diabetic Retinopathy Detection and Retinal Image Generation. IEEE Journal of Biomedical and Health Informatics, 26, 44-55. https://doi.org/10.1109/JBHI.2021.3110593 |
[41] | Kwon, J., Choi, J., Shin, J.W., Lee, J. and Kook, M.S. (2017) Glaucoma Diagnostic Capabilities of Foveal Avascular Zone Parameters Using Optical Coherence Tomography Angiography According to Visual Field Defect Location. Journal of Glaucoma, 26, 1120-1129. https://doi.org/10.1097/IJG.0000000000000800 |
[42] | Lee, H., Kim, S.T. and Ro, Y.M. (2019) Generation of Multimodal Justification Using Visual Word Constraint Model for Explainable Computer-Aided Diagnosis. 2nd International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2019, and the 9th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2019, Held in Conjunction with the 22nd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2019, Shenzhen, 17 October 2019, 21-29.
https://doi.org/10.1007/978-3-030-33850-3_3 |
[43] | Xiao, C., Ma, T., Dieng, A.B., Blei, D.M. and Wang, F. (2018) Readmission Prediction via Deep Contextual Embedding of Clinical Concepts. PLoS ONE, 13, e0195024. https://doi.org/10.1371/journal.pone.0195024 |
[44] | Shmueli, O., Yehuda, R., Szeskin, A., Joskowicz, L. and Levy, J. (2022) Progression of cRORA (Complete RPE and Outer Retinal Atrophy) in Dry Age-Related Macular Degeneration Measured Using SD-OCT. Translational Vision Science & Technology, 11, 19. https://doi.org/10.1167/tvst.11.1.19 |
[45] | de Jong, E.K., Geerlings, M.J. and den Hollander, A.I. (2020) Age-Related Macular Degeneration. In: Gao, X.R., Ed., Genetics Genomics of Eye Disease, Academic Press, Cambridge, 155-180.
https://doi.org/10.1016/B978-0-12-816222-4.00010-1 |
[46] | Jong, P.T.V. (2006) Mechanisms of Disease: Age-Related Macular Degeneration. The New England Journal of Medicine, 355, 1474-1485. https://doi.org/10.1056/NEJMra062326 |
[47] | Moraes, G., Fu, D.J., Wilson, M., Khalid, H., Wagner, S.K., Korot, E., et al. (2021) Quantitative Analysis of OCT for Neovascular Age-Related Macular Degeneration Using Deep Learning. Ophthalmology, 128, 693-705.
https://doi.org/10.1016/j.ophtha.2020.09.025 |
[48] | Yang, J., Fong, S., Wang, H., Hu, Q., Lin, C., Huang, S., et al. (2021) Artificial Intelligence in Ophthalmopathy and Ultra-Wide Field Image: A Survey. Expert Systems with Applications, 182, Article ID: 115068.
https://doi.org/10.1016/j.eswa.2021.115068 |