全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于离散元法的煤颗粒摩擦系数标定研究
Research on Calibration of Coal Particle Friction Coefficient Based on Discrete Element Method

DOI: 10.12677/MOS.2022.113047, PP. 508-515

Keywords: 煤颗粒,摩擦系数,堆积角,图像处理,仿真试验
Coal Particles
, Friction Coefficient, Accumulation Angle, Image Processing, Simulation Test

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了简单且精确地标定煤颗粒摩擦系数的数值,提出了一种仿真与实验相结合的测定堆积角方法来推导煤颗粒摩擦系数。在分析煤颗粒堆积角与摩擦系数之间的函数关系后,建立二阶预测模型,以此逆推煤颗粒摩擦系数。用基于离散元法来创建煤颗粒模型进行大量堆积仿真试验,用MATLAB对最终堆积图片处理,提取堆积外轮廓曲线并进行线性拟合,计算堆积角度,最后将堆积角带入数学模型中逆推摩擦系数。再用相同的装置与方法进行煤颗粒堆积实验,验证仿真的可行性与结果的准确性。结果表明:通过煤颗粒堆积角推导煤颗粒摩擦系数是合理的、可行的,采用仿真试验和真实实验相结合的方法能使得标定过程简单且求解出的各项摩擦系数结果精确。
In order to calibrate the friction coefficient of coal particles simply and accurately, a method of measuring the stacking angle combining simulation with experiment is proposed to deduce the friction coefficient of coal particles. Based on the analysis of the functional relationship between the stacking angle of coal particles and the friction coefficient, a second-order prediction model is established to deduce the friction coefficient of coal particles. The coal particle model is created based on the discrete element method to carry out a large number of stacking simulation experiments. The final stacking image is processed with MATLAB, and the stacking contour curve is extracted and linearly fitted to calculate the stacking angle. Finally, the stacking angle is brought into the mathematical model to deduce the friction coefficient. Then the same device and method are used to carry out the coal particle stacking experiment to verify the feasibility of the simulation and the accuracy of the results. The results show that it is reasonable and feasible to deduce the friction coefficient of coal particles from the stacking angle of coal particles, and the combination of simulation test and real experiment can make the calibration process simple and the calculated friction coefficient results accurate.

References

[1]  李铁军. 煤颗粒离散元模型宏细观参数标定及其关系[D]: [硕士学位论文]. 太原: 太原理工大学, 2019.
[2]  韩燕龙, 贾富国, 唐玉荣, 等. 颗粒滚动摩擦系数对堆积特性的影响[J]. 物理学报, 2014, 63(17): 165-171.
[3]  周文秀. 玉米籽粒的物理力学特性研究[D]: [硕士学位论文]. 哈尔滨: 东北农业大学, 2015.
[4]  张涛, 刘飞, 赵满全, 等. 玉米秸秆接触物理参数测定与离散元仿真标定[J]. 中国农业大学报, 2018, 23(4): 120-127.
[5]  李铁军, 王学文, 李博, 等. 基于离散元法的煤颗粒模型参数优化[J]. 中国粉体技术, 2018, 24(5): 6-12.
[6]  夏蕊, 杨兆建, 李博, 等. 基于离散元法的煤散料堆积角试验研究[J]. 中国粉体技术, 2018, 24(6): 36-42.
[7]  Li, B., Wang, X.W., Xia, R., et al. (2019) Research on the Bionic Design of the Middle Trough of a Scraper Conveyor Based on the Finite Element Method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233, 3286-3301.
https://doi.org/10.1177/0954406218805115
[8]  问小江, 方飞飞, 刘应科, 等. 基于煤粉堆积角的EDEM颗粒接触参数标定[J]. 中国安全科学学报, 2020, 30(7): 114-119.
[9]  曾刚. 基于Pro/E的堆煤场给料机位置优化设计[J]. 煤炭技术, 2014, 33(10): 200-201.
[10]  刘文君. 基于离散元的煤矿回转窑内物料混合特性仿真分析[J]. 煤炭技术, 2017, 36(11): 320-322.
[11]  汪利萍. 基于离散元方法的立式辊磨机粉磨装置性能研究[D]: [硕士学位论文]. 淮南: 安徽理工大学, 2020.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133