|
超重力下气泡聚并破碎特性的数值分析
|
Abstract:
气泡广泛存在于自然界及工业生产中,气泡的聚并破碎现象对气液两相流动及传热传质行为有重要的影响,研究气泡在超重力场下的聚并破碎现象对工业生产具有重要的意义。计算流体力学(Computational Fluid Dynamics, CFD)与群平衡模型(Population Balance Model, PBM)耦合能有效地模拟气液两相流动,且可以对气泡的聚并与破碎行为进行模拟。通过用户自定义函数(User Defined Functions, UDF)在径向上添加恒定力场,运用CFD-PBM耦合模型对超重力场中的气液两相流进行了模拟研究,探究超重力场对气泡运动行为及聚并破碎特性的影响,并对超重力场中气泡的聚并破碎机理进行探究。研究表明,超重力场对气泡的聚并破碎有着显著的影响,当超重力场强度较小时其主要影响气泡的聚并,大气泡含量较多,气泡尺寸分布较窄;随着超重力场强度的增加,气泡的破碎行为逐渐增强,小气泡的含量显著增多,气泡的尺寸分布变宽。
Bubbles exist widely in nature and in industrial production. The coalescence and breakup of bubbles have an important effect on gas-liquid two-phase flow and heat and mass transfer behavior. It is of great significance to study the coalescence and breakup of bubbles under different force fields for industrial production. The CFD-PBM model can effectively simulate the gas-liquid two-phase flow and simulate the coalescence and breakup behavior of bubbles. A constant force field was added to the radial direction of the User Defined Function (UDF), and the gas-liquid two-phase flow in the high gravity field was simulated by using the CFD-PBM coupling model. The effects of the high gravity field on bubble motion and coalescence-breakup characteristics were investigated, and the coalescence-breakup mechanism of bubbles in the high gravity field was also investigated. The results show that the high gravity field has a significant effect on the coalescence of bubbles. When the intensity of high gravity field is small, it mainly affects the coalescence of bubbles, and there are more large bubbles and the size distribution of bubbles is narrow. With the increase of the strength of high gravity field, the bubble breakup behavior gradually increases, the content of small bubbles increases significantly, and the size distribution of bubbles becomes wider.
[1] | Besagni, G., Inzoli, F., De Guido, G., et al. (2017) The Dual Effect of Viscosity on Bubble Column Hydrodynamics. Chemical Engineering Science, 158, 509-538. https://doi.org/10.1016/j.ces.2016.11.003 |
[2] | Tomiyama, A., Celata, G.P., Hosokawa, S., et al. (2002) Terminal Velocity of Single Bubbles in Surface Tension Force Dominant Regime. International Journal of Multiphase Flow, 28, 1497-1519.
https://doi.org/10.1016/S0301-9322(02)00032-0 |
[3] | Tomiyama, A., Tamai, H., Zun, I., et al. (2002) Transverse Migration of Single Bubbles in Simple Shear Flows. Chemical Engineering Science, 57, 1849-1858. https://doi.org/10.1016/S0009-2509(02)00085-4 |
[4] | Yang, N. and Xiao, Q. (2017) A Mesoscale Approach for Population Balance Modeling of Bubble Size Distribution in Bubble Column Reactors. Chemical Engineering Science, 170, 241-250. https://doi.org/10.1016/j.ces.2017.01.026 |
[5] | 蔡禄, 孙治谦, 朱丽云, 等. 气液旋流分离技术应用研究进展[J]. 石油机械, 2021, 49(1): 102-109. |
[6] | 高璟, 刘有智, 常凌飞. 超重力技术在电化学反应过程中的应用进展[J]. 化学工程, 2011, 39(6): 12-15+49. |
[7] | 王明涌, 邢海青, 王志, 等. 超重力强化氯碱电解反应[J]. 物理化学学报, 2008, 24(3): 520-526. |
[8] | 李皓月, 刘有智, 高璟, 等. 超重力-电催化-Fenton耦合法处理含酚废水[J]. 过程工程学报, 2015, 15(6): 1006-1011. |
[9] | Sanyal, J., Vásquez, S., Roy, S., et al. (1999) Numerical Simulation of Gas-Liquid Dynamics in Cylindrical Bubble Column Reactors. Chemical Engineering Science, 54, 5071-5083. https://doi.org/10.1016/S0009-2509(99)00235-3 |
[10] | Oey, R.S., Mudde, R.F. and van den Akker, H.E.A. (2003) Sensitivity Study on Interfacial Closure Laws in Two-Fluid Bubbly Flow Simulations. AIChE Journal, 49, 1621-1636. https://doi.org/10.1002/aic.690490703 |
[11] | Tabib, M.V., Roy, S.A. and Joshi, J.B. (2007) CFD Simulation of Bubble Column—An Analysis of Interphase Forces and Turbulence Models. Chemical Engineering Journal, 139, 589-614. https://doi.org/10.1016/j.cej.2007.09.015 |
[12] | Gemello, L., Plais, C., Augier, F., et al. (2019) Population Balance Modelling of Bubble Columns under the Heterogeneous Flow Regime. Chemical Engineering Journal, 372, 590-604. https://doi.org/10.1016/j.cej.2019.04.109 |
[13] | Hu, G., Ma, Y., Zhang, H., et al. (2021) Investigation on Sub-Models of Population Balance Model for Subcooled Boiling in Vertical Gas-Liquid Flow by Comprehensive Evaluation. International Journal of Heat and Mass Transfer, 167, Article ID: 120816. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120816 |
[14] | Guo, K.Y., Wang, T.F., Liu, Y.F., et al. (2017) CFD-PBM Simulations of a Bubble Column with Different Liquid Properties. Chemical Engineering Journal, 329, 116-127. https://doi.org/10.1016/j.cej.2017.04.071 |
[15] | Hulburt, H.M. and Katz, S. (1964) Some Problems in Particle Technology: A Statistical Mechanical Formulation. Chemical Engineering Science, 19, 555-574. https://doi.org/10.1016/0009-2509(64)85047-8 |
[16] | Randolph, A.D. (1964) A Population Balance for Countable Entities. Canadian Journal of Chemical Engineering, 42, 280-281. https://doi.org/10.1002/cjce.5450420612 |
[17] | Lee, C.H., Erickson, L.E. and Glasgow, L.A. (1987) Bubble Breakup and Coalescence in Turbulent Gas-Liquid Dispersions. Chemical Engineering Communications, 59, 65-84. https://doi.org/10.1080/00986448708911986 |
[18] | Luo, H. and Svendsen, H.F. (1996) Modeling and Simulation of Binary Approach by Energy Conservation Analysis. Chemical Engineering Communications, 145, 145-153. https://doi.org/10.1080/00986449608936473 |
[19] | Lehr, F., Millies, M. and Mewes, D. (2002) Bubble-Size Distribution and Flow Fields in Bubble Columns. AIChE Journal, 48, 2426-2443. https://doi.org/10.1002/aic.690481103 |
[20] | 赵腾飞, 张华. 气泡碰撞过程中形变及破碎现象影响因素分析[J/OL]. 计算物理, 1-14.
http://kns.cnki.net/kcms/detail/11.2011.O4.20210701.1903.004.html, 2021-12-16. |
[21] | 陈烁, 王太, 苏硕, 谢英柏, 等. 均匀电场中气泡上升特性的实验研究[J]. 力学学报, 2021, 53(10): 2736-2744. |
[22] | Zhang, X.B., Zheng, R.Q. and Luo, Z.H. (2020) CFD-PBM Simulation of Bubble Columns: Effect of Parameters in the Class Method for Solving PBEs. Chemical Engineering Science, 226, Article ID: 115853.
https://doi.org/10.1016/j.ces.2020.115853 |
[23] | Zhang, H., Sayyar, A., Wang, Y., et al. (2020) Generality of the CFD-PBM Coupled Model for Bubble Column Simulation. Chemical Engineering Science, 219, Article ID: 115514. https://doi.org/10.1016/j.ces.2020.115514 |
[24] | 张华海, 王铁峰. CFD-PBM耦合模型模拟气液鼓泡床的通用性研究[J]. 化工学报, 2019, 70(2): 487-495. |
[25] | 高颂, 徐燕燕, 李继香, 叶爽, 黄伟光. 基于TFM-PBM耦合模型的离心泵内微气泡破碎合并的模拟研究[J]. 化工学报, 2021, 72(10): 5082-5093. |
[26] | Liang, X.-F., Pan, H., Su, Y.-H. and Luo, Z.-H. (2016) CFD-PBM Approach with Modified Drag Model for the Gas-Liquid Flow in a Bubble Column. Chemical Engineering Research and Design, 112, 88-102.
https://doi.org/10.1016/j.cherd.2016.06.014 |
[27] | Liao, Y. and Lucas, D. (2010) A Literature Review on Mechanisms and Models for the Coalescence Process of Fluid Particles. Chemical Engineering Science, 65, 2851-2864. https://doi.org/10.1016/j.ces.2010.02.020 |
[28] | Luo, H. (1993) Coalescence, Breakup and Liquid Circulation in Bubble Column Reactors. |